相關(guān)習(xí)題
 0  263884  263892  263898  263902  263908  263910  263914  263920  263922  263928  263934  263938  263940  263944  263950  263952  263958  263962  263964  263968  263970  263974  263976  263978  263979  263980  263982  263983  263984  263986  263988  263992  263994  263998  264000  264004  264010  264012  264018  264022  264024  264028  264034  264040  264042  264048  264052  264054  264060  264064  264070  264078  266669 

科目: 來源: 題型:

【題目】已知橢圓為左、右焦點,直線交橢圓于,兩點.

1)若垂直于軸時,求;

2)當(dāng)時,軸上方時,求的坐標(biāo);

3)若直線軸于,直線軸于,是否存在直線,使,若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)該零件的流水線上隨機(jī)抽取100個零件為樣本,測量其直徑后,整理得到下表:

經(jīng)計算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計值.

(I)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行判定(表示相應(yīng)事件的概率):

;

;

.

判定規(guī)則為:若同時滿足上述三個式子,則設(shè)備等級為甲;若僅滿足其中兩個,則等級為乙,若僅滿足其中一個,則等級為丙;若全部都不滿足,則等級為了.試判斷設(shè)備的性能等級.

(Ⅱ)將直徑尺寸在之外的零件認(rèn)定為是“次品”.

①從設(shè)備的生產(chǎn)流水線上隨機(jī)抽取2個零件,求其中次品個數(shù)的數(shù)學(xué)期望;

②從樣本中隨意抽取2個零件,求其中次品個數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在以,,為頂點的五面體中,平面平面,是邊長為的正三角形,直線與平面所成角為.

(I)求證:;

(Ⅱ)若,四邊形為平行四邊形,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】空氣質(zhì)量指數(shù)是檢測空氣質(zhì)量的重要參數(shù),其數(shù)值越大說明空氣污染狀況越嚴(yán)重,空氣質(zhì)量越差.某地環(huán)保部門統(tǒng)計了該地區(qū)某月1日至24日連續(xù)24天的空氣質(zhì)量指數(shù),根據(jù)得到的數(shù)據(jù)繪制出如圖所示的折線圖,則下列說法錯誤的是( )

A. 該地區(qū)在該月2日空氣質(zhì)量最好

B. 該地區(qū)在該月24日空氣質(zhì)量最差

C. 該地區(qū)從該月7日到12日持續(xù)增大

D. 該地區(qū)的空氣質(zhì)量指數(shù)與這段日期成負(fù)相關(guān)

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在梯形中,,,,四邊形為矩形,平面平面,.

1)求證:平面

2)在線段上是否存在點,使得平面與平面所成銳二面角的平面角為,且滿足?若不存在,請說明理由;若存在,求出的長度.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為).

(I)求直線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;

(Ⅱ)已知是直線上的一點,是曲線上的一點, ,若的最大值為2,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,矩形中,,的中點,現(xiàn)將折起,使得平面及平面都與平面垂直.

1)求證:平面;

2)求二面角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,已知點是拋物線上一定點,直線的傾斜角互補(bǔ),且與拋物線另交于兩個不同的點.

(1)求點到其準(zhǔn)線的距離;

(2)求證:直線的斜率為定值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),(常數(shù)).

(Ⅰ)當(dāng)的圖象相切時,求的值;

(Ⅱ)設(shè),若存在極值,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)該零件的流水線上隨機(jī)抽取100個零件為樣本,測量其直徑后,整理得到下表:

直徑/mm

58

59

61

62

63

64

65

件數(shù)

1

1

3

5

6

19

33

直徑/mm

66

67

68

69

70

71

73

合計

件數(shù)

18

4

4

2

1

2

1

100

經(jīng)計算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計值.

(I)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行判定(表示相應(yīng)事件的概率):①;②;③.判定規(guī)則為:若同時滿足上述三個式子,則設(shè)備等級為甲;若僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部都不滿足,則等級為丁.試判斷設(shè)備的性能等級.

(Ⅱ)將直徑尺寸在之外的零件認(rèn)定為是“次品”,將直徑尺寸在之外的零件認(rèn)定為“突變品”.從樣本的“次品”中隨意抽取兩件,求至少有一件“突變品”的概率.

查看答案和解析>>

同步練習(xí)冊答案