科目: 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面是平行四邊形,PD⊥AB,O是AD的中點,BO=CO.
(1)求證:AB⊥平面PAD;
(2)若AD=2AB=4, PA=PD,點M在側棱PD上,且PD=3MD,二面角P-BC-D的大小為,求直線BP與平面MAC所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:
支付金額 支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計該校學生中上個月A,B兩種支付方式都使用的人數(shù);
(Ⅱ)從樣本僅使用B的學生中隨機抽取1人,求該學生上個月支付金額大于2000元的概率;
(Ⅲ)已知上個月樣本學生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用B的學生中隨機抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結合(Ⅱ)的結果,能否認為樣本僅使用B的學生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在發(fā)生公共衛(wèi)生事件期間,有專業(yè)機構認為該事件在一段時間內沒有發(fā)生大規(guī)模群體感染的標志為“連續(xù)10天,每天新增疑似病例不超過7人”.過去10日,A、B、C、D四地新增疑似病例數(shù)據(jù)信息如下:
A地:中位數(shù)為2,極差為5; B地:總體平均數(shù)為2,眾數(shù)為2;
C地:總體平均數(shù)為1,總體方差大于0; D地:總體平均數(shù)為2,總體方差為3.
則以上四地中,一定符合沒有發(fā)生大規(guī)模群體感染標志的是_______(填A、B、C、D)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,.過焦點且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.
(1)求橢圓的標準方程;
(2)設過點的直線與橢圓相交于,兩點,若,問直線是否存在?若存在,求直線的斜率的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】從某小學的期末考試中抽取部分學生的數(shù)學成績,由抽查結果得到如圖的頻率分布直方圖,分數(shù)落在區(qū)間,,內的頻率之比為.
(1)求這些學生的分數(shù)落在區(qū)間內的頻率;
(2)(。┤舨捎梅謱映闃拥姆椒◤姆謹(shù)落在區(qū)間,內抽取4人,求從分數(shù)落在區(qū)間,內各抽取的人數(shù);
(ⅱ)從上述抽取的4人中再隨機抽取2人,求這2人全部來自于區(qū)間內的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù))).
(1)若是函數(shù)的極值點,求實數(shù)的值并討論的單調性;
(2)若,函數(shù)有兩個零點,,證明:.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,.過焦點且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.
(1)求橢圓的標準方程;
(2)設過點的直線與橢圓相交于,兩點,若,問直線是否存在?若存在,求直線的斜率的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,∥,,是等邊三角形,側面底面,,,,點是棱上靠近點的一個三等分點.
(1)求證:∥平面;
(2)設點是線段(含端點)上的動點,若直線與底面所成的角的正弦值為,求線段的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】從某地區(qū)小學的期末考試中抽取部分學生的數(shù)學成績,由抽查結果得到如圖的頻率分布直方圖,分數(shù)落在區(qū)間,,內的頻率之比為.
(1)求這些學生的分數(shù)落在區(qū)間內的頻率;
(2)若將頻率視為概率,從該地區(qū)小學的這些學生中隨機抽取3人,記這3人中成績位于區(qū)間內的人數(shù)為,求的分布列與數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com