科目: 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,已知,頂點(diǎn)P在平面ABC上的射影為的外接圓圓心.
(1)證明:平面平面ABC;
(2)若點(diǎn)M在棱PA上,,且二面角P-BC-M的余弦值為,試求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】根據(jù)閱兵領(lǐng)導(dǎo)小組辦公室介紹,2019年國慶70周年閱兵有59個方(梯)隊(duì)和聯(lián)合軍樂團(tuán),總規(guī)模約1.5萬人,是近幾次閱兵中規(guī)模最大的一次.其中,徒步方隊(duì)15個.為了保證閱兵式時隊(duì)列保持整齊,各個方隊(duì)對受閱隊(duì)員的身高也有著非常嚴(yán)格的限制,太高或太矮都不行.徒步方隊(duì)隊(duì)員,男性身高普遍在175cm至185cm之間;女性身高普遍在163cm至175cm之間,這是常規(guī)標(biāo)準(zhǔn).要求最為嚴(yán)格的三軍儀仗隊(duì),其隊(duì)員的身高一般都在184cm至190cm之間.經(jīng)過隨機(jī)調(diào)查某個閱兵陣營中女子100人,得到她們身高的直方圖,如圖,記C為事件:“某一閱兵女子身高不低于169cm”,根據(jù)直方圖得到P(C)的估計(jì)值為0.5.
(1)求直方圖中a,b的值;
(2)估計(jì)這個陣營女子身高的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且AB=1,BC=2, ∠ABC=60°,PA⊥平面ABCD,AE⊥PC于E,
下列四個結(jié)論:①AB⊥AC;②AB⊥平面PAC;③PC⊥平面ABE;④BE⊥PC.正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】某單位共有老年人120人,中年人360人,青年人n人,為調(diào)查身體健康狀況,需要從中抽取一個容量為m的樣本,用分層抽樣的方法進(jìn)行抽樣調(diào)查,樣本中的中年人為6人,則n和m的值不可以是下列四個選項(xiàng)中的哪組( )
A.n=360,m=14B.n=420,m=15C.n=540,m=18D.n=660,m=19
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年國慶黃金周影市火爆依舊,《我和我的祖國》、《中國機(jī)長》、《攀登者》票房不斷刷新,為了解我校高三2300名學(xué)生的觀影情況,隨機(jī)調(diào)查了100名在校學(xué)生,其中看過《我和我的祖國》或《中國機(jī)長》的學(xué)生共有80位,看過《中國機(jī)長》的學(xué)生共有60位,看過《中國機(jī)長》且看過《我和我的祖國》的學(xué)生共有50位,則該校高三年級看過《我和我的祖國》的學(xué)生人數(shù)的估計(jì)值為( )
A.1150B.1380C.1610D.1860
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)打算處理一批產(chǎn)品,這些產(chǎn)品每箱100件,以箱為單位銷售.已知這批產(chǎn)品中每箱出現(xiàn)的廢品率只有或者兩種可能,兩種可能對應(yīng)的概率均為0.5.假設(shè)該產(chǎn)品正品每件市場價格為100元,廢品不值錢.現(xiàn)處理價格為每箱8400元,遇到廢品不予更換.以一箱產(chǎn)品中正品的價格期望值作為決策依據(jù).
(1)在不開箱檢驗(yàn)的情況下,判斷是否可以購買;
(2)現(xiàn)允許開箱,有放回地隨機(jī)從一箱中抽取2件產(chǎn)品進(jìn)行檢驗(yàn).
①若此箱出現(xiàn)的廢品率為,記抽到的廢品數(shù)為,求的分布列和數(shù)學(xué)期望;
②若已發(fā)現(xiàn)在抽取檢驗(yàn)的2件產(chǎn)品中,其中恰有一件是廢品,判斷是否可以購買.
查看答案和解析>>
科目: 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長度單位已知直線l的參數(shù)方程為(為參數(shù),),拋物線C的普通方程為.
(1)求拋物線C的準(zhǔn)線的極坐標(biāo)方程;
(2)設(shè)直線l與拋物線C相交于A,B兩點(diǎn),求的最小值及此時的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示的幾何體中,正方形所在平面垂直于平面,四邊形為平行四邊形,為上一點(diǎn),且平面,.
(1)求證:平面平面;
(2)當(dāng)三棱錐體積最大時,求直線與平面所成角的正切值.
查看答案和解析>>
科目: 來源: 題型:
【題目】【2018屆安徽省合肥市高三第一次教學(xué)質(zhì)量檢測】一家大型購物商場委托某機(jī)構(gòu)調(diào)查該商場的顧客使用移動支付的情況.調(diào)查人員從年齡在內(nèi)的顧客中,隨機(jī)抽取了180人,調(diào)查結(jié)果如表:
(1)為推廣移動支付,商場準(zhǔn)備對使用移動支付的顧客贈送1個環(huán)保購物袋.若某日該商場預(yù)計(jì)有12000人購物,試根據(jù)上述數(shù)據(jù)估計(jì),該商場當(dāng)天應(yīng)準(zhǔn)備多少個環(huán)保購物袋?
(2)某機(jī)構(gòu)從被調(diào)查的使用移動支付的顧客中,按分層抽樣的方式抽取7人作跟蹤調(diào)查,并給其中2人贈送額外禮品,求獲得額外禮品的2人年齡都在內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com