科目: 來源: 題型:
【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對該班40名學(xué)生進行了問卷調(diào)查,得到了如下的列聯(lián)表:
男生 | 女生 | 總計 | |
喜愛打籃球 | 19 | 15 | 34 |
不喜愛打籃球 | 1 | 5 | 6 |
總計 | 20 | 20 | 40 |
(1)在女生不喜愛打籃球的5個個體中,隨機抽取2人,求女生甲被選中的概率;
(2)判斷能否在犯錯誤的概率不超過的條件下認為喜愛籃球與性別有關(guān)?
附:,其中.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | <>0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】在四棱柱ABCD﹣A1B1C1D1中,∠BAD=∠BCD=90°,∠ADC=60°且AD=CD,BB1⊥平面ABCD,BB1=2AB=2.
(1)證明:AC⊥B1D.
(2)求BC1與平面B1C1D所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC的兩個頂點A,B的坐標分別為(,0),(,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=2,動點C的軌跡為曲線G.
(1)求曲線G的方程;
(2)設(shè)直線l與曲線G交于M,N兩點,點D在曲線G上,是坐標原點,判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線方程是,求函數(shù)在上的值域;
(2)當時,記函數(shù),若函數(shù)有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】一年之計在于春,一日之計在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個坑進行播種,每個坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨立.對每一個坑而言,如果至少有兩粒種子發(fā)芽,則不需要進行補播種,否則要補播種.
(1)當取何值時,有3個坑要補播種的概率最大?最大概率為多少?
(2)當時,用表示要補播種的坑的個數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】新聞出版業(yè)不斷推進供給側(cè)結(jié)構(gòu)性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯誤的是( )
A. 2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加
B. 2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍
C. 2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍
D. 2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)是定義域為的奇函數(shù),當時,.
(1)求出函數(shù)在R上的解析式;
(2)畫出函數(shù)的圖象,并根據(jù)圖象寫出的單調(diào)區(qū)間.
(3)求使時的的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)德育處為了解全校學(xué)生的上網(wǎng)情況,在全校隨機抽取了40名學(xué)生(其中男、女生人數(shù)各占一半)進行問卷調(diào)查,并進行了統(tǒng)計,按男、女分為兩組,再將每組學(xué)生的月上網(wǎng)次數(shù)分為5組:,得到如圖所示的頻率分布直方圖.
(1)寫出女生組頻率分布直方圖中的值;
(2)求抽取的40名學(xué)生中月上網(wǎng)次數(shù)不少于15的學(xué)生人數(shù);
(3)在抽取的40名學(xué)生中從月上網(wǎng)次數(shù)不少于20的學(xué)生中隨機抽取3人,并用表示隨機抽取的3人中男生的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù))。在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的極坐標方程為。
(1)求直線的普通方程和圓的直角坐標方程;
(2)設(shè)圓與直線交于,兩點,若點的坐標為,求。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com