科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點,軸的非負半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù),直線與曲線分別交于兩點.
(1)若點的極坐標(biāo)為,求的值;
(2)求曲線的內(nèi)接矩形周長的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=alnx-bx2,a,b∈R.若不等式f(x)≥x對所有的b∈(-∞,0],x∈(e,e2]都成立,則實數(shù)a的取值范圍是( )
A. [e,+∞)B. [,+∞)
C. [,e2)D. [e2,+∞)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知動點到定點的距離比到定直線的距離小.
(1)求點的軌跡的方程;
(2)過點任意作互相垂直的兩條直線,,分別交曲線于點,和,.設(shè)線段,的中點分別為,,求證:直線恒過一個定點;
(3)在(2)的條件下,求面積的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某種植物感染病毒極易導(dǎo)致死亡,某生物研究所為此推出了一種抗病毒的制劑,現(xiàn)對株感染了病毒的該植株樣本進行噴霧試驗測試藥效.測試結(jié)果分“植株死亡”和“植株存活”兩個結(jié)果進行統(tǒng)計;并對植株吸收制劑的量(單位:)進行統(tǒng)計規(guī)定:植株吸收在(包括)以上為“足量”,否則為“不足量”.現(xiàn)對該株植株樣本進行統(tǒng)計,其中“植株存活”的株,對制劑吸收量統(tǒng)計得下表.已知“植株存活”但“制劑吸收不足量”的植株共株.
編號 | ||||||||||||||||||||
吸收量 |
(1)完成以下列聯(lián)表,并判斷是否可以在犯錯誤概率不超過的前提下,認為“植株的存活”與“制劑吸收足量”有關(guān)?
吸收足量 | 吸收不足量 | 合計 | |
植株存活 | |||
植株死亡 | |||
合計 |
(2)若在該樣本“制劑吸收不足量”的植株中隨機抽取株,求這株中恰有株“植株存活”的概率.
參考數(shù)據(jù):
,其中
查看答案和解析>>
科目: 來源: 題型:
【題目】為了堅決打贏新冠狀病毒的攻堅戰(zhàn),阻擊戰(zhàn),某小區(qū)對小區(qū)內(nèi)的名居民進行模排,各年齡段男、女生人數(shù)如下表.已知在小區(qū)的居民中隨機抽取名,抽到歲~歲女居民的概率是.現(xiàn)用分層抽樣的方法在全小區(qū)抽取名居民,則應(yīng)在歲以上抽取的女居民人數(shù)為( )
歲—歲 | 歲—歲 | 歲以上 | |
女生 | |||
男生 |
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓過點,且離心率為.直線與軸正半軸和軸分別交于點、,與橢圓分別交于點、,各點均不重合且滿足 ,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,試證明:直線過定點并求此定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com