相關(guān)習(xí)題
 0  266237  266245  266251  266255  266261  266263  266267  266273  266275  266281  266287  266291  266293  266297  266303  266305  266311  266315  266317  266321  266323  266327  266329  266331  266332  266333  266335  266336  266337  266339  266341  266345  266347  266351  266353  266357  266363  266365  266371  266375  266377  266381  266387  266393  266395  266401  266405  266407  266413  266417  266423  266431  266669 

科目: 來源: 題型:

【題目】已知,函數(shù)有兩個不同的極值點,

(1)求的取值范圍;

(2)證明:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點在橢圓上,過點軸于點

(1)求線段的中點的軌跡的方程

(2)設(shè)、兩點在(1)中軌跡上,點,兩直線的斜率之積為,且(1)中軌跡上存在點滿足,當(dāng)面積最小時,求直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,的中點,交于點,平面,,

(1)求證;平面平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)且,,,曲線的參數(shù)方程為為參數(shù)),以為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求的普通方程及的直角坐標(biāo)方程;

(2)若曲線與曲線分別交于點,求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知直線與橢圓切于點,與圓交于點,圓在點處的切線交于點,為坐標(biāo)原點,則的面積的最大值為( )

A.B.2C.D.1

查看答案和解析>>

科目: 來源: 題型:

【題目】某地區(qū)甲、乙、丙三所單位進(jìn)行招聘,其中甲單位招聘2名,乙單位招聘2名,丙單位招聘1名,并且甲單位要至少招聘一名男生,現(xiàn)有3男3女參加三所單位的招聘,則不同的錄取方案種數(shù)為( )

A.36B.72C.108D.144

查看答案和解析>>

科目: 來源: 題型:

【題目】中國國際智能產(chǎn)業(yè)博覽會(智博會)每年在重慶市舉辦一屆,每年參加服務(wù)的志愿者分“嘉賓”、“法醫(yī)”等若干小組,年底,來自重慶大學(xué)、西南大學(xué)、重慶醫(yī)科大學(xué)、西南政法大學(xué)的500名學(xué)生在重慶科技館多功能廳參加了“志愿者培訓(xùn)”,如圖是四所大學(xué)參加培訓(xùn)人數(shù)的不完整條形統(tǒng)計圖,現(xiàn)用分層抽樣的方法從中抽出20人作為2019年中國國際智博會服務(wù)的志愿者.

(1)分別求出從重慶大學(xué)、西南大學(xué)、重慶醫(yī)科大學(xué)、西南政法大學(xué)抽出的志愿者人數(shù);

(2)若“嘉賓”小組的2名志愿者只能從重慶醫(yī)科大學(xué)或西南政法大學(xué)抽出,求這2人分別來自不同大學(xué)的概率(結(jié)果用分?jǐn)?shù)表示).

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)且,,,曲線的參數(shù)方程為為參數(shù)),以為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求的普通方程及的直角坐標(biāo)方程;

(2)若曲線與曲線分別交于點,求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求不等式的解集;

2)若的圖像與軸圍成直角三角形,的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點的極坐標(biāo)為.

(1)求的直角坐標(biāo)方程和的直角坐標(biāo);

(2)設(shè)交于,兩點,線段的中點為,求.

查看答案和解析>>

同步練習(xí)冊答案