相關(guān)習(xí)題
 0  266415  266423  266429  266433  266439  266441  266445  266451  266453  266459  266465  266469  266471  266475  266481  266483  266489  266493  266495  266499  266501  266505  266507  266509  266510  266511  266513  266514  266515  266517  266519  266523  266525  266529  266531  266535  266541  266543  266549  266553  266555  266559  266565  266571  266573  266579  266583  266585  266591  266595  266601  266609  266669 

科目: 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,過點(diǎn)的直線交拋物線兩點(diǎn).

1)當(dāng)時(shí),求直線的方程;

2)若過點(diǎn)且垂直于直線的直線與拋物線交于兩點(diǎn),記的面積分別為,求的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】近年來,在新高考改革中,打破文理分科的“”模式初露端倪,其中語、數(shù)、外三門課為必考科目,剩下三門為選考科目選考科目成績采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來劃分等級并以此打分得到最后得分,假定省規(guī)定:選考科目按考生成績從高到低排列,按照占總體、、分別賦分分、分、分、分,為了讓學(xué)生們體驗(yàn)賦分制計(jì)算成績的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單料全班排名),知這次摸底考試中的物理成績(滿分分)頻率分布直方圖,化學(xué)成績(滿分分)莖葉圖如圖所示,小明同學(xué)在這次考試中物理分,化學(xué)多分.

(1)采用賦分制后,求小明物理成績的最后得分;

(2)若小明的化學(xué)成績最后得分為分,求小明的原始成績的可能值;

(3)若小明必選物理,其他兩科從化學(xué)、生物、歷史、地理、政治五科中任選,求小明此次考試選考科目包括化學(xué)的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)的圖像在點(diǎn)處有相同的切線,求的值;

(Ⅱ)當(dāng)時(shí),恒成立,求整數(shù)的最大值;

(Ⅲ)證明:

查看答案和解析>>

科目: 來源: 題型:

【題目】定義[x]表示不超過x的最大整數(shù),,例如:.執(zhí)行如圖所示的程序框圖若輸入的,則輸出結(jié)果為(

A.-4.6B.-2.8C.-1.4D.-2.6

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )

A. 45B. 15C. 10D. 0

查看答案和解析>>

科目: 來源: 題型:

【題目】已知.

1)討論函數(shù)的單調(diào)性;

2)證明:.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線,不與坐標(biāo)軸垂直的直線與拋物線交于兩點(diǎn),當(dāng)時(shí),.

1)求拋物線的標(biāo)準(zhǔn)方程;

2)若過定點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,證明:直線過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,平面五邊形是由邊長為2的正方形與上底為1,高為直角梯形組合而成,將五邊形沿著折疊,得到圖2所示的空間幾何體,其中.

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】每逢節(jié)日,電商之間的價(jià)格廝殺已經(jīng)不是什么新鮮事,今年的618日也不例外.某電商在618日之后,隨機(jī)抽取100名顧客進(jìn)行回訪,按顧客的年齡分成6組,得到如下頻數(shù)分布表:

顧客年齡

頻數(shù)

4

24

32

20

16

4

1)在下表中作出這些數(shù)據(jù)的頻率分布直方圖;

2)用分層抽樣的方法從這100名顧客中抽取25人,再從抽取的25人中隨機(jī)抽取2人,求年齡在內(nèi)的顧客人數(shù)的分布列、數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知定義在上的函數(shù).

1)當(dāng)時(shí),解不等式

2)若對任意恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案