相關(guān)習(xí)題
 0  34892  34900  34906  34910  34916  34918  34922  34928  34930  34936  34942  34946  34948  34952  34958  34960  34966  34970  34972  34976  34978  34982  34984  34986  34987  34988  34990  34991  34992  34994  34996  35000  35002  35006  35008  35012  35018  35020  35026  35030  35032  35036  35042  35048  35050  35056  35060  35062  35068  35072  35078  35086  266669 

科目: 來源: 題型:

已知點(diǎn)F(-c,0)(c>0)是雙曲線
x2
a2
-
y2
b2
=1
的左焦點(diǎn),過F且平行于雙曲線漸近線的直線與圓x2+y2=c2交于點(diǎn)P,且點(diǎn)P在拋物線y2=4cx上,則該雙曲線的離心率是( 。

查看答案和解析>>

科目: 來源: 題型:

(2013•浙江模擬)將一個(gè)三位數(shù)的三個(gè)數(shù)字順序顛倒,將所得到的數(shù)和原數(shù)相加,若和中沒有一個(gè)數(shù)字是偶數(shù),則稱這個(gè)數(shù)是奇和數(shù).那么,所有的三位數(shù)中,奇和數(shù)有( 。﹤(gè).

查看答案和解析>>

科目: 來源: 題型:

已知方程x3+ax2+bx+c=0的三個(gè)實(shí)根可分別作為一橢圓,一雙曲線、一拋物線的離心率,則a2+b2的取值范圍是(  )

查看答案和解析>>

科目: 來源: 題型:

如圖的倒三角形數(shù)陣滿足:(1)第1行的,n個(gè)數(shù),分別  是1,3,5,…,2n-1;(2)從第二行起,各行中的每一個(gè)數(shù)都等于它肩上的兩數(shù)之和;(3)數(shù)陣共有n行.問:當(dāng)n=2012時(shí),第32行的第17個(gè)數(shù)是( 。

查看答案和解析>>

科目: 來源: 題型:

若復(fù)數(shù)z=1+i(i是虛數(shù)單位),則( 。

查看答案和解析>>

科目: 來源: 題型:

(2012•保定一模)已知a>0,b>0且a≠1,則“l(fā)ogab>0”是“(a-1)(b-1)>0”的( 。

查看答案和解析>>

科目: 來源: 題型:

(2012•石景山區(qū)一模)定義:若數(shù)列{An}滿足An+1=An2,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
(1)證明:數(shù)列{2an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列.
(2)設(shè)(1)中“平方遞推數(shù)列”的前n項(xiàng)之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項(xiàng)及Tn關(guān)于n的表達(dá)式.
(3)記bn=log2an+1Tn,求數(shù)列{bn}的前n項(xiàng)之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

科目: 來源: 題型:

已知圓C在x軸上的截距為-1和3,在y軸上的一個(gè)截距為1.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)(2 ,
3
-1)
的直線l被圓C截得的弦AB的長(zhǎng)為4,求直線l的傾斜角;
(3)求過原點(diǎn)且被圓C截得的弦長(zhǎng)最短時(shí)的直線l′的方程.

查看答案和解析>>

科目: 來源: 題型:

已知
a
=(cosx+sinx,sinx).
b
=(cosx-sinx,2cosx),設(shè)f(x)=
a
b

(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)三角形ABC的三個(gè)角A,B,C所對(duì)邊分別是a,b,c,且滿足A=
π
3
,f(B)=1,
3
a+
2
b=10,求邊c.

查看答案和解析>>

科目: 來源: 題型:

設(shè)f(x)=
1
3
x3+
1
2
ax2+2bx+c
,當(dāng)x∈(0,1)時(shí)取得極大值,當(dāng)x∈(1,2)時(shí)取得極小值,則
b-3
a+2
的取值范圍為
(-∞,-3)∪(2,+∞)
(-∞,-3)∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案