如圖5-7所示,總質(zhì)量為M的大小兩物體,靜止在光滑水平面上,質(zhì)量為m的小物體和大物體間有壓縮著的彈簧,另有質(zhì)量為2m的物體以v0速度向右沖來(lái).為了防止碰撞,大物體將小物體發(fā)射出去,小物體和沖來(lái)的物體碰撞后黏合在一起.問(wèn)小物體發(fā)射的速度至少應(yīng)多大,才能使它們不再碰撞?

圖5-7

解析:發(fā)射小物體后大物體的速度跟質(zhì)量為2m的物體和小物體碰后的速度相等,恰好使它們不再相碰,這種情況發(fā)射小物體的速度v′就是避免相碰的最小發(fā)射速度.對(duì)發(fā)射小物體的過(guò)程,由動(dòng)量守恒定律得

(M-m)v-mv′=0                                                            ①

對(duì)大、小物體和質(zhì)量為2m的物體相互作用的全過(guò)程,由動(dòng)量守恒定律得

2mv0=(M+2m)v                                                               ②

由①②求得v′=v0.

答案:v0


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中物理 來(lái)源: 題型:

如圖8-7-5所示,一輕質(zhì)彈簧,上端懸掛于天花板,下端系一質(zhì)量為M的平板,處在平衡狀態(tài).一質(zhì)量為m的均勻環(huán)套在彈簧外與平板的距離為h,讓環(huán)自由下落,撞擊平板.已知碰后環(huán)與板以相同的速度向下運(yùn)動(dòng),使彈簧伸長(zhǎng)(    )

   圖8-7-5

    A.若碰撞時(shí)間極短,則碰撞過(guò)程中環(huán)與板的總動(dòng)量守恒

    B.若碰撞時(shí)間極短,則碰撞過(guò)程中環(huán)與板的總機(jī)械能守恒

    C.環(huán)撞擊板后,板的新的平衡位置與h的大小無(wú)關(guān)

    D.在碰后板與環(huán)一起下落的過(guò)程中,它們減少的動(dòng)能等于克服彈簧彈力所做的功

   

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:閱讀理解

第十部分 磁場(chǎng)

第一講 基本知識(shí)介紹

《磁場(chǎng)》部分在奧賽考剛中的考點(diǎn)很少,和高考要求的區(qū)別不是很大,只是在兩處有深化:a、電流的磁場(chǎng)引進(jìn)定量計(jì)算;b、對(duì)帶電粒子在復(fù)合場(chǎng)中的運(yùn)動(dòng)進(jìn)行了更深入的分析。

一、磁場(chǎng)與安培力

1、磁場(chǎng)

a、永磁體、電流磁場(chǎng)→磁現(xiàn)象的電本質(zhì)

b、磁感強(qiáng)度、磁通量

c、穩(wěn)恒電流的磁場(chǎng)

*畢奧-薩伐爾定律(Biot-Savart law):對(duì)于電流強(qiáng)度為I 、長(zhǎng)度為dI的導(dǎo)體元段,在距離為r的點(diǎn)激發(fā)的“元磁感應(yīng)強(qiáng)度”為dB 。矢量式d= k,(d表示導(dǎo)體元段的方向沿電流的方向、為導(dǎo)體元段到考查點(diǎn)的方向矢量);或用大小關(guān)系式dB = k結(jié)合安培定則尋求方向亦可。其中 k = 1.0×10?7N/A2 。應(yīng)用畢薩定律再結(jié)合矢量疊加原理,可以求解任何形狀導(dǎo)線在任何位置激發(fā)的磁感強(qiáng)度。

畢薩定律應(yīng)用在“無(wú)限長(zhǎng)”直導(dǎo)線的結(jié)論:B = 2k ;

*畢薩定律應(yīng)用在環(huán)形電流垂直中心軸線上的結(jié)論:B = 2πkI ;

*畢薩定律應(yīng)用在“無(wú)限長(zhǎng)”螺線管內(nèi)部的結(jié)論:B = 2πknI 。其中n為單位長(zhǎng)度螺線管的匝數(shù)。

2、安培力

a、對(duì)直導(dǎo)體,矢量式為 = I;或表達(dá)為大小關(guān)系式 F = BILsinθ再結(jié)合“左手定則”解決方向問(wèn)題(θ為B與L的夾角)。

b、彎曲導(dǎo)體的安培力

⑴整體合力

折線導(dǎo)體所受安培力的合力等于連接始末端連線導(dǎo)體(電流不變)的的安培力。

證明:參照?qǐng)D9-1,令MN段導(dǎo)體的安培力F1與NO段導(dǎo)體的安培力F2的合力為F,則F的大小為

F = 

  = BI

  = BI

關(guān)于F的方向,由于ΔFF2P∽ΔMNO,可以證明圖9-1中的兩個(gè)灰色三角形相似,這也就證明了F是垂直MO的,再由于ΔPMO是等腰三角形(這個(gè)證明很容易),故F在MO上的垂足就是MO的中點(diǎn)了。

證畢。

由于連續(xù)彎曲的導(dǎo)體可以看成是無(wú)窮多元段直線導(dǎo)體的折合,所以,關(guān)于折線導(dǎo)體整體合力的結(jié)論也適用于彎曲導(dǎo)體。(說(shuō)明:這個(gè)結(jié)論只適用于勻強(qiáng)磁場(chǎng)。)

⑵導(dǎo)體的內(nèi)張力

彎曲導(dǎo)體在平衡或加速的情形下,均會(huì)出現(xiàn)內(nèi)張力,具體分析時(shí),可將導(dǎo)體在被考查點(diǎn)切斷,再將被切斷的某一部分隔離,列平衡方程或動(dòng)力學(xué)方程求解。

c、勻強(qiáng)磁場(chǎng)對(duì)線圈的轉(zhuǎn)矩

如圖9-2所示,當(dāng)一個(gè)矩形線圈(線圈面積為S、通以恒定電流I)放入勻強(qiáng)磁場(chǎng)中,且磁場(chǎng)B的方向平行線圈平面時(shí),線圈受安培力將轉(zhuǎn)動(dòng)(并自動(dòng)選擇垂直B的中心軸OO′,因?yàn)橘|(zhì)心無(wú)加速度),此瞬時(shí)的力矩為

M = BIS

幾種情形的討論——

⑴增加匝數(shù)至N ,則 M = NBIS ;

⑵轉(zhuǎn)軸平移,結(jié)論不變(證明從略);

⑶線圈形狀改變,結(jié)論不變(證明從略);

*⑷磁場(chǎng)平行線圈平面相對(duì)原磁場(chǎng)方向旋轉(zhuǎn)α角,則M = BIScosα ,如圖9-3;

證明:當(dāng)α = 90°時(shí),顯然M = 0 ,而磁場(chǎng)是可以分解的,只有垂直轉(zhuǎn)軸的的分量Bcosα才能產(chǎn)生力矩…

⑸磁場(chǎng)B垂直O(jiān)O′軸相對(duì)線圈平面旋轉(zhuǎn)β角,則M = BIScosβ ,如圖9-4。

證明:當(dāng)β = 90°時(shí),顯然M = 0 ,而磁場(chǎng)是可以分解的,只有平行線圈平面的的分量Bcosβ才能產(chǎn)生力矩…

說(shuō)明:在默認(rèn)的情況下,討論線圈的轉(zhuǎn)矩時(shí),認(rèn)為線圈的轉(zhuǎn)軸垂直磁場(chǎng)。如果沒(méi)有人為設(shè)定,而是讓安培力自行選定轉(zhuǎn)軸,這時(shí)的力矩稱為力偶矩。

二、洛侖茲力

1、概念與規(guī)律

a、 = q,或展開為f = qvBsinθ再結(jié)合左、右手定則確定方向(其中θ為的夾角)。安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)。

b、能量性質(zhì)

由于總垂直確定的平面,故總垂直 ,只能起到改變速度方向的作用。結(jié)論:洛侖茲力可對(duì)帶電粒子形成沖量,卻不可能做功;颍郝鍋銎澚墒箮щ娏W拥膭(dòng)量發(fā)生改變卻不能使其動(dòng)能發(fā)生改變。

問(wèn)題:安培力可以做功,為什么洛侖茲力不能做功?

解說(shuō):應(yīng)該注意“安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)”這句話的確切含義——“宏觀體現(xiàn)”和“完全相等”是有區(qū)別的。我們可以分兩種情形看這個(gè)問(wèn)題:(1)導(dǎo)體靜止時(shí),所有粒子的洛侖茲力的合力等于安培力(這個(gè)證明從略);(2)導(dǎo)體運(yùn)動(dòng)時(shí),粒子參與的是沿導(dǎo)體棒的運(yùn)動(dòng)v1和導(dǎo)體運(yùn)動(dòng)v2的合運(yùn)動(dòng),其合速度為v ,這時(shí)的洛侖茲力f垂直v而安培力垂直導(dǎo)體棒,它們是不可能相等的,只能說(shuō)安培力是洛侖茲力的分力f1 = qv1B的合力(見(jiàn)圖9-5)。

很顯然,f1的合力(安培力)做正功,而f不做功(或者說(shuō)f1的正功和f2的負(fù)功的代數(shù)和為零)。(事實(shí)上,由于電子定向移動(dòng)速率v1在10?5m/s數(shù)量級(jí),而v2一般都在10?2m/s數(shù)量級(jí)以上,致使f1只是f的一個(gè)極小分量。)

☆如果從能量的角度看這個(gè)問(wèn)題,當(dāng)導(dǎo)體棒放在光滑的導(dǎo)軌上時(shí)(參看圖9-6),導(dǎo)體棒必獲得動(dòng)能,這個(gè)動(dòng)能是怎么轉(zhuǎn)化來(lái)的呢?

若先將導(dǎo)體棒卡住,回路中形成穩(wěn)恒的電流,電流的功轉(zhuǎn)化為回路的焦耳熱。而將導(dǎo)體棒釋放后,導(dǎo)體棒受安培力加速,將形成感應(yīng)電動(dòng)勢(shì)(反電動(dòng)勢(shì))。動(dòng)力學(xué)分析可知,導(dǎo)體棒的最后穩(wěn)定狀態(tài)是勻速運(yùn)動(dòng)(感應(yīng)電動(dòng)勢(shì)等于電源電動(dòng)勢(shì),回路電流為零)。由于達(dá)到穩(wěn)定速度前的回路電流是逐漸減小的,故在相同時(shí)間內(nèi)發(fā)的焦耳熱將比導(dǎo)體棒被卡住時(shí)少。所以,導(dǎo)體棒動(dòng)能的增加是以回路焦耳熱的減少為代價(jià)的。

2、僅受洛侖茲力的帶電粒子運(yùn)動(dòng)

a、時(shí),勻速圓周運(yùn)動(dòng),半徑r =  ,周期T = 

b、成一般夾角θ時(shí),做等螺距螺旋運(yùn)動(dòng),半徑r =  ,螺距d = 

這個(gè)結(jié)論的證明一般是將分解…(過(guò)程從略)。

☆但也有一個(gè)問(wèn)題,如果將分解(成垂直速度分量B2和平行速度分量B1 ,如圖9-7所示),粒子的運(yùn)動(dòng)情形似乎就不一樣了——在垂直B2的平面內(nèi)做圓周運(yùn)動(dòng)?

其實(shí),在圖9-7中,B1平行v只是一種暫時(shí)的現(xiàn)象,一旦受B2的洛侖茲力作用,v改變方向后就不再平行B1了。當(dāng)B1施加了洛侖茲力后,粒子的“圓周運(yùn)動(dòng)”就無(wú)法達(dá)成了。(而在分解v的處理中,這種局面是不會(huì)出現(xiàn)的。)

3、磁聚焦

a、結(jié)構(gòu):見(jiàn)圖9-8,K和G分別為陰極和控制極,A為陽(yáng)極加共軸限制膜片,螺線管提供勻強(qiáng)磁場(chǎng)。

b、原理:由于控制極和共軸膜片的存在,電子進(jìn)磁場(chǎng)的發(fā)散角極小,即速度和磁場(chǎng)的夾角θ極小,各粒子做螺旋運(yùn)動(dòng)時(shí)可以認(rèn)為螺距彼此相等(半徑可以不等),故所有粒子會(huì)“聚焦”在熒光屏上的P點(diǎn)。

4、回旋加速器

a、結(jié)構(gòu)&原理(注意加速時(shí)間應(yīng)忽略)

b、磁場(chǎng)與交變電場(chǎng)頻率的關(guān)系

因回旋周期T和交變電場(chǎng)周期T′必相等,故 =

c、最大速度 vmax = = 2πRf

5、質(zhì)譜儀

速度選擇器&粒子圓周運(yùn)動(dòng),和高考要求相同。

第二講 典型例題解析

一、磁場(chǎng)與安培力的計(jì)算

【例題1】?jī)筛鶡o(wú)限長(zhǎng)的平行直導(dǎo)線a、b相距40cm,通過(guò)電流的大小都是3.0A,方向相反。試求位于兩根導(dǎo)線之間且在兩導(dǎo)線所在平面內(nèi)的、與a導(dǎo)線相距10cm的P點(diǎn)的磁感強(qiáng)度。

【解說(shuō)】這是一個(gè)關(guān)于畢薩定律的簡(jiǎn)單應(yīng)用。解題過(guò)程從略。

【答案】大小為8.0×10?6T ,方向在圖9-9中垂直紙面向外。

【例題2】半徑為R ,通有電流I的圓形線圈,放在磁感強(qiáng)度大小為B 、方向垂直線圈平面的勻強(qiáng)磁場(chǎng)中,求由于安培力而引起的線圈內(nèi)張力。

【解說(shuō)】本題有兩種解法。

方法一:隔離一小段弧,對(duì)應(yīng)圓心角θ ,則弧長(zhǎng)L = θR 。因?yàn)棣?u> →

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:閱讀理解

第二部分  牛頓運(yùn)動(dòng)定律

第一講 牛頓三定律

一、牛頓第一定律

1、定律。慣性的量度

2、觀念意義,突破“初態(tài)困惑”

二、牛頓第二定律

1、定律

2、理解要點(diǎn)

a、矢量性

b、獨(dú)立作用性:ΣF → a ,ΣFx → ax 

c、瞬時(shí)性。合力可突變,故加速度可突變(與之對(duì)比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測(cè)量手段”)。

3、適用條件

a、宏觀、低速

b、慣性系

對(duì)于非慣性系的定律修正——引入慣性力、參與受力分析

三、牛頓第三定律

1、定律

2、理解要點(diǎn)

a、同性質(zhì)(但不同物體)

b、等時(shí)效(同增同減)

c、無(wú)條件(與運(yùn)動(dòng)狀態(tài)、空間選擇無(wú)關(guān))

第二講 牛頓定律的應(yīng)用

一、牛頓第一、第二定律的應(yīng)用

單獨(dú)應(yīng)用牛頓第一定律的物理問(wèn)題比較少,一般是需要用其解決物理問(wèn)題中的某一個(gè)環(huán)節(jié)。

應(yīng)用要點(diǎn):合力為零時(shí),物體靠慣性維持原有運(yùn)動(dòng)狀態(tài);只有物體有加速度時(shí)才需要合力。有質(zhì)量的物體才有慣性。a可以突變而v、s不可突變。

1、如圖1所示,在馬達(dá)的驅(qū)動(dòng)下,皮帶運(yùn)輸機(jī)上方的皮帶以恒定的速度向右運(yùn)動(dòng)。現(xiàn)將一工件(大小不計(jì))在皮帶左端A點(diǎn)輕輕放下,則在此后的過(guò)程中(      

A、一段時(shí)間內(nèi),工件將在滑動(dòng)摩擦力作用下,對(duì)地做加速運(yùn)動(dòng)

B、當(dāng)工件的速度等于v時(shí),它與皮帶之間的摩擦力變?yōu)殪o摩擦力

C、當(dāng)工件相對(duì)皮帶靜止時(shí),它位于皮帶上A點(diǎn)右側(cè)的某一點(diǎn)

D、工件在皮帶上有可能不存在與皮帶相對(duì)靜止的狀態(tài)

解說(shuō):B選項(xiàng)需要用到牛頓第一定律,A、C、D選項(xiàng)用到牛頓第二定律。

較難突破的是A選項(xiàng),在為什么不會(huì)“立即跟上皮帶”的問(wèn)題上,建議使用反證法(t → 0 ,a →  ,則ΣFx   ,必然會(huì)出現(xiàn)“供不應(yīng)求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對(duì)滑動(dòng)?因?yàn)槿耸强梢孕巫、重心可以調(diào)節(jié)的特殊“物體”)

此外,本題的D選項(xiàng)還要用到勻變速運(yùn)動(dòng)規(guī)律。用勻變速運(yùn)動(dòng)規(guī)律和牛頓第二定律不難得出

只有當(dāng)L > 時(shí)(其中μ為工件與皮帶之間的動(dòng)摩擦因素),才有相對(duì)靜止的過(guò)程,否則沒(méi)有。

答案:A、D

思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達(dá)皮帶右端的時(shí)間t(過(guò)程略,答案為5.5s)

進(jìn)階練習(xí):在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學(xué)生分以下三組進(jìn)行)——

① v0 = 1m/s  (答:0.5 + 37/8 = 5.13s)

② v0 = 4m/s  (答:1.0 + 3.5 = 4.5s)

③ v0 = 1m/s  (答:1.55s)

2、質(zhì)量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問(wèn):

① 如果在P處剪斷細(xì)繩,在剪斷瞬時(shí),B的加速度是多少?

② 如果在Q處剪斷彈簧,在剪斷瞬時(shí),B的加速度又是多少?

解說(shuō):第①問(wèn)是常規(guī)處理。由于“彈簧不會(huì)立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時(shí)B鉤碼的加速度為零(A的加速度則為2g)。

第②問(wèn)需要我們反省這樣一個(gè)問(wèn)題:“彈簧不會(huì)立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點(diǎn)剪斷彈簧時(shí),彈簧卻是沒(méi)有慣性的(沒(méi)有質(zhì)量),遵從理想模型的條件,彈簧應(yīng)在一瞬間恢復(fù)原長(zhǎng)!即彈簧彈力突變?yōu)榱恪?/p>

答案:0 ;g 。

二、牛頓第二定律的應(yīng)用

應(yīng)用要點(diǎn):受力較少時(shí),直接應(yīng)用牛頓第二定律的“矢量性”解題。受力比較多時(shí),結(jié)合正交分解與“獨(dú)立作用性”解題。

在難度方面,“瞬時(shí)性”問(wèn)題相對(duì)較大。

1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。

解說(shuō):受力分析 → 根據(jù)“矢量性”定合力方向  牛頓第二定律應(yīng)用

答案:gsinθ。

思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對(duì)靜止,斜面應(yīng)具備一個(gè)多大的水平加速度?(解題思路完全相同,研究對(duì)象仍為滑塊。但在第二環(huán)節(jié)上應(yīng)注意區(qū)別。答:gtgθ。)

進(jìn)階練習(xí)1:在一向右運(yùn)動(dòng)的車廂中,用細(xì)繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)

進(jìn)階練習(xí)2、如圖4所示,小車在傾角為α的斜面上勻加速運(yùn)動(dòng),車廂頂用細(xì)繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個(gè)穩(wěn)定的夾角β。試求小車的加速度。

解:繼續(xù)貫徹“矢量性”的應(yīng)用,但數(shù)學(xué)處理復(fù)雜了一些(正弦定理解三角形)。

分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應(yīng)的夾角。設(shè)張力T與斜面方向的夾角為θ,則

θ=(90°+ α)- β= 90°-(β-α)                 (1)

對(duì)灰色三角形用正弦定理,有

 =                                        (2)

解(1)(2)兩式得:ΣF = 

最后運(yùn)用牛頓第二定律即可求小球加速度(即小車加速度)

答: 。

2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運(yùn)動(dòng)。斜面上用一條與斜面平行的細(xì)繩系一質(zhì)量為m的小球,當(dāng)斜面加速度為a時(shí)(a<ctgθ),小球能夠保持相對(duì)斜面靜止。試求此時(shí)繩子的張力T 。

解說(shuō):當(dāng)力的個(gè)數(shù)較多,不能直接用平行四邊形尋求合力時(shí),宜用正交分解處理受力,在對(duì)應(yīng)牛頓第二定律的“獨(dú)立作用性”列方程。

正交坐標(biāo)的選擇,視解題方便程度而定。

解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程

ΣFx = ma ,即Tx - Nx = ma

ΣFy = 0 , 即Ty + Ny = mg

代入方位角θ,以上兩式成為

T cosθ-N sinθ = ma                       (1)

T sinθ + Ncosθ = mg                       (2)

這是一個(gè)關(guān)于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ

解法二:下面嘗試一下能否獨(dú)立地解張力T 。將正交分解的坐標(biāo)選擇為:x——斜面方向,y——和斜面垂直的方向。這時(shí),在分解受力時(shí),只分解重力G就行了,但值得注意,加速度a不在任何一個(gè)坐標(biāo)軸上,是需要分解的。矢量分解后,如圖8所示。

根據(jù)獨(dú)立作用性原理,ΣFx = max

即:T - Gx = max

即:T - mg sinθ = m acosθ

顯然,獨(dú)立解T值是成功的。結(jié)果與解法一相同。

答案:mgsinθ + ma cosθ

思考:當(dāng)a>ctgθ時(shí),張力T的結(jié)果會(huì)變化嗎?(從支持力的結(jié)果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒(méi)有意義。答:T = m 。)

學(xué)生活動(dòng):用正交分解法解本節(jié)第2題“進(jìn)階練習(xí)2”

進(jìn)階練習(xí):如圖9所示,自動(dòng)扶梯與地面的夾角為30°,但扶梯的臺(tái)階是水平的。當(dāng)扶梯以a = 4m/s2的加速度向上運(yùn)動(dòng)時(shí),站在扶梯上質(zhì)量為60kg的人相對(duì)扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對(duì)人的靜摩擦力f 。

解:這是一個(gè)展示獨(dú)立作用性原理的經(jīng)典例題,建議學(xué)生選擇兩種坐標(biāo)(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對(duì)比解題過(guò)程,進(jìn)而充分領(lǐng)會(huì)用牛頓第二定律解題的靈活性。

答:208N 。

3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知,F(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時(shí)加速度。

解說(shuō):第一步,闡明繩子彈力和彈簧彈力的區(qū)別。

(學(xué)生活動(dòng))思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時(shí)釋放,會(huì)有什么現(xiàn)象?原因是什么?

結(jié)論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。

第二步,在本例中,突破“繩子的拉力如何瞬時(shí)調(diào)節(jié)”這一難點(diǎn)(從即將開始的運(yùn)動(dòng)來(lái)反推)。

知識(shí)點(diǎn),牛頓第二定律的瞬時(shí)性。

答案:a = gsinθ ;a = gtgθ 。

應(yīng)用:如圖11所示,吊籃P掛在天花板上,與吊籃質(zhì)量相等的物體Q被固定在吊籃中的輕彈簧托住,當(dāng)懸掛吊籃的細(xì)繩被燒斷瞬間,P、Q的加速度分別是多少?

解:略。

答:2g ;0 。

三、牛頓第二、第三定律的應(yīng)用

要點(diǎn):在動(dòng)力學(xué)問(wèn)題中,如果遇到幾個(gè)研究對(duì)象時(shí),就會(huì)面臨如何處理對(duì)象之間的力和對(duì)象與外界之間的力問(wèn)題,這時(shí)有必要引進(jìn)“系統(tǒng)”、“內(nèi)力”和“外力”等概念,并適時(shí)地運(yùn)用牛頓第三定律。

在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過(guò)程簡(jiǎn)化,使過(guò)程的物理意義更加明晰。

對(duì)N個(gè)對(duì)象,有N個(gè)隔離方程和一個(gè)(可能的)整體方程,這(N + 1)個(gè)方程中必有一個(gè)是通解方程,如何取舍,視解題方便程度而定。

補(bǔ)充:當(dāng)多個(gè)對(duì)象不具有共同的加速度時(shí),一般來(lái)講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個(gè)局限(可以介紹推導(dǎo)過(guò)程)——

Σ= m1 + m2 + m3 + … + mn

其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。

1、如圖12所示,光滑水平面上放著一個(gè)長(zhǎng)為L(zhǎng)的均質(zhì)直棒,現(xiàn)給棒一個(gè)沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關(guān)系怎樣?

解說(shuō):截取隔離對(duì)象,列整體方程和隔離方程(隔離右段較好)。

答案:N = x 。

思考:如果水平面粗糙,結(jié)論又如何?

解:分兩種情況,(1)能拉動(dòng);(2)不能拉動(dòng)。

第(1)情況的計(jì)算和原題基本相同,只是多了一個(gè)摩擦力的處理,結(jié)論的化簡(jiǎn)也麻煩一些。

第(2)情況可設(shè)棒的總質(zhì)量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒(méi)有張力,x>(L-l)的左端才有張力。

答:若棒仍能被拉動(dòng),結(jié)論不變。

若棒不能被拉動(dòng),且F = μMg時(shí)(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質(zhì)量),當(dāng)x<(L-l),N≡0 ;當(dāng)x>(L-l),N = 〔x -〈L-l〉〕。

應(yīng)用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個(gè)長(zhǎng)方體滑塊,它們的質(zhì)量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:

A、μ1 m1gcosθ ;    B、μ2 m1gcosθ ;

C、μ1 m2gcosθ ;    D、μ1 m2gcosθ ;

解:略。

答:B 。(方向沿斜面向上。)

思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結(jié)論會(huì)變嗎?(2)如果斜面光滑,兩滑塊之間有沒(méi)有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應(yīng)對(duì)盒子的哪一側(cè)內(nèi)壁有壓力?

解:略。

答:(1)不會(huì);(2)沒(méi)有;(3)若斜面光滑,對(duì)兩內(nèi)壁均無(wú)壓力,若斜面粗糙,對(duì)斜面上方的內(nèi)壁有壓力。

2、如圖15所示,三個(gè)物體質(zhì)量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計(jì),繩子的質(zhì)量也不計(jì),為使三個(gè)物體無(wú)相對(duì)滑動(dòng),水平推力F應(yīng)為多少?

解說(shuō):

此題對(duì)象雖然有三個(gè),但難度不大。隔離m2 ,豎直方向有一個(gè)平衡方程;隔離m1 ,水平方向有一個(gè)動(dòng)力學(xué)方程;整體有一個(gè)動(dòng)力學(xué)方程。就足以解題了。

答案:F =  。

思考:若將質(zhì)量為m3物體右邊挖成凹形,讓m2可以自由擺動(dòng)(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個(gè)恰當(dāng)?shù)腇′,使三者無(wú)相對(duì)運(yùn)動(dòng)?如果沒(méi)有,說(shuō)明理由;如果有,求出這個(gè)F′的值。

解:此時(shí),m2的隔離方程將較為復(fù)雜。設(shè)繩子張力為T ,m2的受力情況如圖,隔離方程為:

 = m2a

隔離m,仍有:T = m1a

解以上兩式,可得:a = g

最后用整體法解F即可。

答:當(dāng)m1 ≤ m2時(shí),沒(méi)有適應(yīng)題意的F′;當(dāng)m1 > m2時(shí),適應(yīng)題意的F′=  。

3、一根質(zhì)量為M的木棒,上端用細(xì)繩系在天花板上,棒上有一質(zhì)量為m的貓,如圖17所示,F(xiàn)將系木棒的繩子剪斷,同時(shí)貓相對(duì)棒往上爬,但要求貓對(duì)地的高度不變,則棒的加速度將是多少?

解說(shuō):法一,隔離法。需要設(shè)出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動(dòng)力學(xué)方程,解方程組即可。

法二,“新整體法”。

據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:

( M + m )g = m·0 + M a1 

解棒的加速度a1十分容易。

答案:g 。

四、特殊的連接體

當(dāng)系統(tǒng)中各個(gè)體的加速度不相等時(shí),經(jīng)典的整體法不可用。如果各個(gè)體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時(shí),我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。

解題思想:抓某個(gè)方向上加速度關(guān)系。方法:“微元法”先看位移關(guān)系,再推加速度關(guān)系。、

1、如圖18所示,一質(zhì)量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個(gè)質(zhì)量為m的滑塊從斜面頂端釋放,試求斜面的加速度。

解說(shuō):本題涉及兩個(gè)物體,它們的加速度關(guān)系復(fù)雜,但在垂直斜面方向上,大小是相等的。對(duì)兩者列隔離方程時(shí),務(wù)必在這個(gè)方向上進(jìn)行突破。

(學(xué)生活動(dòng))定型判斷斜面的運(yùn)動(dòng)情況、滑塊的運(yùn)動(dòng)情況。

位移矢量示意圖如圖19所示。根據(jù)運(yùn)動(dòng)學(xué)規(guī)律,加速度矢量a1和a2也具有這樣的關(guān)系。

(學(xué)生活動(dòng))這兩個(gè)加速度矢量有什么關(guān)系?

沿斜面方向、垂直斜面方向建x 、y坐標(biāo),可得:

a1y = a2y             ①

且:a1y = a2sinθ     ②

隔離滑塊和斜面,受力圖如圖20所示。

對(duì)滑塊,列y方向隔離方程,有:

mgcosθ- N = ma1y     ③

對(duì)斜面,仍沿合加速度a2方向列方程,有:

Nsinθ= Ma2          ④

解①②③④式即可得a2 。

答案:a2 =  。

(學(xué)生活動(dòng))思考:如何求a1的值?

解:a1y已可以通過(guò)解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。

答:a1 =  。

2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無(wú)摩擦地在棒上滑動(dòng),開始時(shí)與棒的A端相距b ,相對(duì)棒靜止。當(dāng)棒保持傾角θ不變地沿水平面勻加速運(yùn)動(dòng),加速度為a(且a>gtgθ)時(shí),求滑套C從棒的A端滑出所經(jīng)歷的時(shí)間。

解說(shuō):這是一個(gè)比較特殊的“連接體問(wèn)題”,尋求運(yùn)動(dòng)學(xué)參量的關(guān)系似乎比動(dòng)力學(xué)分析更加重要。動(dòng)力學(xué)方面,只需要隔離滑套C就行了。

(學(xué)生活動(dòng))思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)

定性繪出符合題意的運(yùn)動(dòng)過(guò)程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標(biāo)后,S1x表示S1在x方向上的分量。不難看出:

S1x + b = S cosθ                   ①

設(shè)全程時(shí)間為t ,則有:

S = at2                          ②

S1x = a1xt2                        ③

而隔離滑套,受力圖如圖23所示,顯然:

mgsinθ= ma1x                       ④

解①②③④式即可。

答案:t = 

另解:如果引進(jìn)動(dòng)力學(xué)在非慣性系中的修正式 Σ* = m (注:*為慣性力),此題極簡(jiǎn)單。過(guò)程如下——

以棒為參照,隔離滑套,分析受力,如圖24所示。

注意,滑套相對(duì)棒的加速度a是沿棒向上的,故動(dòng)力學(xué)方程為:

F*cosθ- mgsinθ= ma            (1)

其中F* = ma                      (2)

而且,以棒為參照,滑套的相對(duì)位移S就是b ,即:

b = S = a t2                 (3)

解(1)(2)(3)式就可以了。

第二講 配套例題選講

教材范本:龔霞玲主編《奧林匹克物理思維訓(xùn)練教材》,知識(shí)出版社,2002年8月第一版。

例題選講針對(duì)“教材”第三章的部分例題和習(xí)題。

查看答案和解析>>

同步練習(xí)冊(cè)答案