(12分) 經(jīng)過近7年時間,2億千米在太空中穿行后,美航天局和歐航天局合作研究出“卡西尼”號土星探測器于美國東部時間6月30日抵達(dá)預(yù)定軌道,開始“拜訪土星及其衛(wèi)星家族. 這是人類首次針對土星及其31顆已知衛(wèi)星最詳盡的探測. 若“卡西尼”號土星探測器進(jìn)入環(huán)繞土星上空的圓軌道飛行,已知土星半徑為R,探測器離土星表面高度為h,環(huán)繞n周的飛行時間為t. 求土星的質(zhì)量和平均密度(球體體積公式)。

解析試題分析:根據(jù)萬有引力提供向心力有

探測器運行的周期:
聯(lián)立以上各式,解得
土星的質(zhì)量
由M=ρV和,聯(lián)立解得
土星的密度
考點:本題考查的是萬有引力定律和航天的知識。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:單選題

質(zhì)量為m的探月航天器在接近月球表面的軌道上飛行,其運動視為勻速圓周運動。已知月球質(zhì)量為M,月球半徑為R,月球表面重力加速度為g,引力常量為G,不考慮月球自轉(zhuǎn)的影響,則航天器的(    )

A.線速度 B.角速度
C.運行周期 D.向心加速度

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

某顆人造地球衛(wèi)星在距地面高度為h的圓形軌道上繞地球飛行,其運動可視為勻速圓周運動。已知地球半徑為R,地面附近的重力加速度為g。
請推導(dǎo):(1)衛(wèi)星在圓形軌道上運行速度  (2)運行周期的表達(dá)式。

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

(13分)2013年12月2日1時30分我國發(fā)射的“嫦娥三號”探月衛(wèi)星于12月14日晚9時11分順利實現(xiàn)了“月面軟著陸”,該過程的最后階段是:著陸器離月面h高時速度減小為零,為防止發(fā)動機(jī)將月面上的塵埃吹起,此時要關(guān)掉所有的發(fā)動機(jī),讓著陸器自由下落著陸.己知地球質(zhì)量是月球質(zhì)量的81倍,地球半徑是月球半徑的4倍,地球半徑R0=6.4X106m,地球表面的重力加速度g0=10m/s2,不計月球自轉(zhuǎn)的影響(結(jié)果保留兩位有效數(shù)字).
(1)若題中h=3.2m,求著陸器落到月面時的速度大。
(2)由于引力的作用,月球引力范圍內(nèi)的物體具有引力勢能.理論證明,若取離月心無窮遠(yuǎn)處為引力勢能的零勢點,距離月心為r的物體的引力勢能,式中G為萬有引力常數(shù),M為月球的質(zhì)量,m為物體的質(zhì)量.求著陸器僅依靠慣性從月球表面脫離月球引力范圍所需的最小速度.

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

(15分)按照我國整個月球探測活動的計劃,在第一步“繞月”工程圓滿完成各項目標(biāo)和科學(xué)探測任務(wù)后,將開展第二步“落月”工程。如圖所示 假設(shè)月球半徑為R,月球表面的重力加速度為g0,飛船沿距月球表面高度為3R的圓形軌道I上運動,當(dāng)運動到軌道 上的A點時,點火變軌進(jìn)人橢圓軌道II,在到達(dá)軌道的近月點B時再次點火變軌,進(jìn)入近月軌道III繞月球做圓周運動。求:

(1)飛船在軌道I上的運行速率;
(2)飛船在軌道III上繞月球運動一周所需的時間?

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

(15分)“嫦娥一號” 的成功發(fā)射,為實現(xiàn)中華民族幾千年的奔月夢想邁出了重要的一步。已知“嫦娥一號”繞月飛行軌道可以近似看成圓周,距月球表面的高度為H,飛行周期為T,月球的半徑為R,萬有引力常量為G,假設(shè)宇航員在飛船上,飛船在月球表面附近豎直平面內(nèi)俯沖, 在最低點附近作半徑為r的圓周運動,宇航員質(zhì)量是m,飛船經(jīng)過最低點時的速度是v;。求:
(1)月球的質(zhì)量M是多大?
(2)經(jīng)過最低點時,座位對宇航員的作用力F是多大?

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

(10分)天文觀測到某行星有一顆以半徑r、周期T環(huán)繞該行星做圓周運動的衛(wèi)星,已知衛(wèi)星質(zhì)量為m.求:
(1)該行星的質(zhì)量M是多大?
(2)如果該行星的半徑是衛(wèi)星運動軌道半徑的1/10,那么行星表面處的重力加速度是多大?

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

“神舟十號”飛船在繞地球做勻速圓周運動時,離地面的高度為h,周期為T,已知地球的半徑為R,引力常量為G,寫出地球質(zhì)量和密度的表達(dá)式。

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

(1)開普勒從1609年~1619年發(fā)表了著名的開普勒行星運動三定律,其中第一定律為:所有的行星分別在大小不同的橢圓軌道上圍繞太陽運動,太陽在這個橢圓的一個焦點上。第三定律:所有行星的橢圓軌道的半長軸的三次方跟公轉(zhuǎn)周期的平方的比值都相等.實踐證明,開普勒三定律也適用于其他中心天體的衛(wèi)星運動。

(2)從地球表面向火星發(fā)射火星探測器.設(shè)地球和火星都在同一平面上繞太陽做圓周運動,火星軌道半徑Rm為地球軌道半徑R的1.5倍,簡單而又比較節(jié)省能量的發(fā)射過程可分為兩步進(jìn)行:第一步,在地球表面用火箭對探測器進(jìn)行加速,使之獲得足夠動能,從而脫離地球引力作用成為一個沿地球軌道運動的人造行星。第二步是在適當(dāng)時刻點燃與探測器連在一起的火箭發(fā)動機(jī),在短時間內(nèi)對探測器沿原方向加速,使其速度數(shù)值增加到適當(dāng)值,從而使得探測器沿著一個與地球軌道及火星軌道分別在長軸兩端相切的半個橢圓軌道正好射到火星上.當(dāng)探測器脫離地球并沿地球公轉(zhuǎn)軌道穩(wěn)定運行后,在某年3月1日零時測得探測器與火星之間的角距離為60°,如圖所示,問應(yīng)在何年何月何日點燃探測器上的火箭發(fā)動機(jī)方能使探測器恰好落在火星表面?(時間計算僅需精確到日),已知地球半徑為:;

查看答案和解析>>

同步練習(xí)冊答案