分析 (1)先據(jù)曲線方程求出小環(huán)運動到x=$\frac{5π}{3}$(m)時的高度,再據(jù)機械能守恒求出該點的速度.
(2)據(jù)機械能守恒求出小環(huán)運動的最高點,再據(jù)曲線方程求出小環(huán)在趕上的運動區(qū)域即可.
(3)先據(jù)機械能守恒和牛頓運動定律求出再低點的曲率半徑,再利用機械能守恒和牛頓運動定律求出最高點時與桿的作用力.
解答 解:(1)據(jù)曲線方程可知,當x=0時,y=-2.5m;當x=$\frac{5π}{3}$(m),y=-5m.
由x=0時到x=$\frac{5π}{3}$(m)為研究對象,由機械能守恒定律得:
$\frac{1}{2}mv_1^2$=-mg(5-2.5)+$\frac{1}{2}m{v^2}$,
代入數(shù)據(jù)解得:v=$5\sqrt{6}m/s$;
(2)分析可知,小環(huán)在曲線上運動機械能守恒,當運動到最高點是速率為零,據(jù)機械能守恒定律得:
$\frac{1}{2}mv_1^2$+mg(-2.5)=mgh[h為最高點到x軸的距離]…①
據(jù)曲線方程:h=5.0cos(kx+$\frac{2π}{3}$)…②
聯(lián)立①②解得:x=5π,所以$-\frac{5π}{3}≤x≤5π$;
(3)由小環(huán)從x=0處到最低點為研究對象,據(jù)功能關系律得:
$\frac{1}{2}mv_2^2$+mg(-2.5)=$\frac{1}{2}mv_3^2$-5mg(v3為最低點的速度)…③
在最低點為研究對象,據(jù)牛頓第二定律得:F-mg=m$\frac{{v}_{3}^{2}}{R}$(F為最低點時,小環(huán)與軌道的彈力)…④
由小環(huán)x=0到最高點為研究對象,據(jù)機械能守恒定律:$\frac{1}{2}$m${v}_{2}^{2}$+mg(-2.5)=5mg+$\frac{1}{2}m{v}_{4}^{2}$( v4為最高點的速度)…⑤
再最高點為研究對象,據(jù)牛頓第二定律得:
mg-F2=m$\frac{{v}_{3}^{2}}{R}$(F2為最高點時,小環(huán)與軌道的彈力)…⑥
聯(lián)立③④⑤⑥解得:F2=-10N,負號表示方向豎直向下;
答:(1)若使小環(huán)以v1=10m/s的初速度從x=0處沿桿向下運動,求小環(huán)運動到x=$\frac{5}{3}π$(m)處時的速度的大小5$\sqrt{6}$m/s;
(2)在第(1)問的情況下,求小環(huán)在桿上運動區(qū)域的x坐標范圍-$\frac{5}{3}π$≤x≤5π;
(3)小環(huán)經(jīng)過軌道最高點Q時桿對小環(huán)的彈力為10N,方向豎直向下.
點評 本題和數(shù)學的上的方程結合起來,根據(jù)方程來確定物體的位置,從而利用機械能守恒來解題,題目新穎,是個好題.
科目:高中物理 來源: 題型:實驗題
查看答案和解析>>
科目:高中物理 來源: 題型:多選題
A. | 該帶電粒子不可能剛好從正方形的某個頂點射出磁場 | |
B. | 若該帶電粒子從ab邊射出磁場,它在磁場中經(jīng)歷的時間可能是t0 | |
C. | 若該帶電粒子從bc邊射出磁場,它在磁場中經(jīng)歷的時間可能是t0 | |
D. | 若該帶電粒子從cd邊射出磁場,它在磁場中經(jīng)歷的時間一定是$\frac{3}{2}$t0 |
查看答案和解析>>
科目:高中物理 來源: 題型:實驗題
查看答案和解析>>
科目:高中物理 來源: 題型:多選題
A. | 圖中①是紅光,②是藍光 | |
B. | “光驅”中的光指的是激光 | |
C. | 激光光子比普通光光子的能量要高 | |
D. | 光盤記錄信息的密度高是由于入射光的平行度好 |
查看答案和解析>>
科目:高中物理 來源: 題型:多選題
A. | 當平臺運動到最高點時,物體對平臺壓力最小 | |
B. | 當平臺向下運動經(jīng)過平衡位置時所受物體壓力小于平臺向上運動過平衡位置時所受物體壓力 | |
C. | 當振動平臺運動到最低點時物體對平臺壓力最大 | |
D. | 平臺所受最大壓力可能大于物體重力的2倍 |
查看答案和解析>>
科目:高中物理 來源: 題型:填空題
查看答案和解析>>
科目:高中物理 來源: 題型:實驗題
查看答案和解析>>
科目:高中物理 來源: 題型:實驗題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com