17.如圖所示,粗糙水平面上放置一個(gè)質(zhì)量M=2kg、長(zhǎng)度L=5m的木板A,可視為質(zhì)點(diǎn)的物塊B放在木板A的最左端,其質(zhì)量m=1kg.已知A、B間動(dòng)摩擦因數(shù)為μ1=0.2,A與水平地面間的動(dòng)摩擦因數(shù)μ2=0.4.開(kāi)始時(shí)A、B均處于靜止?fàn)顟B(tài),當(dāng)B獲得水平向右的初速度v0=8m/s的同時(shí),對(duì)A施加水平向右的恒力,取g=10m/s2,求:
(1)為使物塊B不從木板A的右端滑出,力F的最小值為多大?
(2)若F=22N,則物塊B的最大速度為多大?

分析 (1)物塊B滑到A的右端時(shí)A、B速度相等,則物塊B剛好不從木板A的右端滑出,A、B的相對(duì)位移為木板長(zhǎng)L,木板A的加速度為${a}_{2}^{\;}$,由速度公式和位移公式及對(duì)物塊B和木板A運(yùn)用牛頓第二定律,可求出F的最小值;
(2)物塊B在木板A上先做勻減速直線運(yùn)動(dòng),加速度為${a}_{1}^{\;}=2m/{s}_{\;}^{2}$.木板A做勻加速直線運(yùn)動(dòng).對(duì)木板A,由牛頓第二定律可得木板的加速度,經(jīng)過(guò)一段時(shí)間A、B速度相同,求出A、B的位移及B相對(duì)于A的位移$△{x}_{1}^{\;}$;速度相等后,木板繼續(xù)勻加速直線運(yùn)動(dòng),木板加速度大于物塊B的加速度,物塊也做勻加速直線運(yùn)動(dòng),當(dāng)木板A相對(duì)B的位移大小$△{x}_{2}^{\;}$等于$△{x}_{1}^{\;}$時(shí),物塊B從木板A的左端滑出時(shí)物塊B的速度最大.

解答 解:(1)物塊B在木板A上做勻減速直線運(yùn)動(dòng),由牛頓第二定律可知:
${μ}_{1}^{\;}mg=m{a}_{1}^{\;}$
解得:${a}_{1}^{\;}=2m/{s}_{\;}^{2}$
物塊B滑到A的右端時(shí)A、B速度相等,則物塊B剛好不從木板A的右端滑出,A、B的相對(duì)位移為木板長(zhǎng)L,木板A的加速度為${a}_{2}^{\;}$,由速度公式和位移公式可知:
木板A的速度為:$v={a}_{2}^{\;}t$
物塊B的速度為:$v={v}_{0}^{\;}-{a}_{1}^{\;}t$
木板A的位移為:${x}_{A}^{\;}=\frac{v}{2}t$
物塊B的位移為:${x}_{B}^{\;}=\frac{{v}_{0}^{\;}-v}{2}t$
A、B的相對(duì)位移為木板長(zhǎng)L:$L={x}_{B}^{\;}-{x}_{A}^{\;}$
聯(lián)立以上各式解得:${a}_{2}^{\;}=\frac{22}{5}m/{s}_{\;}^{2}$
對(duì)木板A,由牛頓第二定律可知:$F+{μ}_{1}^{\;}mg-{μ}_{2}^{\;}(m+M)g=M{a}_{2}^{\;}$
解得:F=18.8N
(2)物塊B在木板A上先做勻減速直線運(yùn)動(dòng),加速度為${a}_{1}^{\;}=2m/{s}_{\;}^{2}$.木板A做勻加速直線運(yùn)動(dòng).對(duì)木板A,由牛頓第二定律可得:
$F+{μ}_{1}^{\;}mg-{μ}_{2}^{\;}(m+M)g=M{a}_{3}^{\;}$
解得:${a}_{3}^{\;}=6m/{s}_{\;}^{2}$
設(shè)經(jīng)過(guò)時(shí)間${t}_{1}^{\;}$,A、B兩物體速度相同,大小都為${v}_{1}^{\;}$
${v}_{1}^{\;}={v}_{0}^{\;}-{a}_{1}^{\;}{t}_{1}^{\;}$
${v}_{1}^{\;}={a}_{3}^{\;}{t}_{1}^{\;}$
聯(lián)立解得:${t}_{1}^{\;}=1s$
${v}_{1}^{\;}=6m/s$
在此過(guò)程中A、B的位移分別為${x}_{A1}^{\;}$、${x}_{B1}^{\;}$,則
${x}_{A1}^{\;}=\frac{{v}_{1}^{\;}}{2}{t}_{1}^{\;}$
${x}_{B1}^{\;}=\frac{{v}_{0}^{\;}+{v}_{1}^{\;}}{2}{t}_{1}^{\;}$
A、B間相對(duì)位移為:$△{x}_{1}^{\;}={x}_{B1}^{\;}-{x}_{A1}^{\;}$
A、B速度相同后,木板A以${a}_{4}^{\;}$的加速度繼續(xù)勻加速運(yùn)動(dòng),由牛頓運(yùn)動(dòng)定律可知:
$F-{μ}_{1}^{\;}mg-{μ}_{2}^{\;}(m+M)g=M{a}_{4}^{\;}$
解得:${a}_{4}^{\;}=4m/{s}_{\;}^{2}$
由于${a}_{4}^{\;}>{a}_{1}^{\;}$,所以物塊B也向右做勻加速運(yùn)動(dòng),但相對(duì)木板A向左運(yùn)動(dòng),經(jīng)時(shí)間${t}_{2}^{\;}$后,物塊B會(huì)從木板A的左端滑出,在這段時(shí)間內(nèi):
木板A的位移為:${x}_{A2}^{\;}={v}_{1}^{\;}{t}_{2}^{\;}-\frac{1}{2}{a}_{4}^{\;}{t}_{2}^{2}$
物塊B的位移為:${x}_{B2}^{\;}={v}_{1}^{\;}{t}_{2}^{\;}-\frac{1}{2}{a}_{1}^{\;}{t}_{2}^{2}$
A、B間的相對(duì)位移$△{x}_{2}^{\;}=△{x}_{1}^{\;}$,則
$△{x}_{1}^{\;}={x}_{A2}^{\;}-{x}_{B2}^{\;}$
聯(lián)立解得:${t}_{2}^{\;}=2s$
物塊B從木板A的左端滑出時(shí)的速度為:
${v}_{3}^{\;}={v}_{1}^{\;}+{a}_{1}^{\;}{t}_{2}^{\;}$
解得:${v}_{3}^{\;}=10m/s$
物塊B從木板A的左端滑出后落到地面上做勻減速運(yùn)動(dòng),所以整個(gè)過(guò)程中,物塊B從木板A的左端滑出時(shí)的速度為最大速度:10m/s
答:(1)為使物塊B不從木板A的右端滑出,力F的最小值為18.8N
(2)若F=22N,則物塊B的最大速度為10m/s

點(diǎn)評(píng) 本題考查了受力分析與牛頓第二定律的綜合運(yùn)用,關(guān)鍵理清放上木塊后木板和木塊的運(yùn)動(dòng)情況,抓住受力分析,結(jié)合牛頓第二定律結(jié)合解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中物理 來(lái)源: 題型:實(shí)驗(yàn)題

16.在做“研究勻變速直線運(yùn)動(dòng)”的實(shí)驗(yàn)時(shí),某同學(xué)得到一條用打點(diǎn)計(jì)時(shí)器打下的紙帶,并在其上取了A、B、C、D、E、F等6個(gè)計(jì)數(shù)點(diǎn)(每相鄰兩個(gè)計(jì)數(shù)點(diǎn)間還有4個(gè)打點(diǎn)計(jì)時(shí)器打下的點(diǎn),本圖中沒(méi)有畫(huà)出)打點(diǎn)計(jì)時(shí)器接的是220V、50Hz的交變電流.他把一把毫米刻度尺放在紙帶上,其零刻度和計(jì)數(shù)點(diǎn)A對(duì)齊.

(1)計(jì)數(shù)點(diǎn)C的刻度尺讀數(shù)為2.40cm
(2)由以上數(shù)據(jù)計(jì)算打點(diǎn)計(jì)時(shí)器在打C點(diǎn)時(shí),物體的即時(shí)速度vC是0.16m/s(結(jié)果均保留兩位有效數(shù)字);
(3)如果當(dāng)時(shí)電網(wǎng)中交變電流的頻率是f=49Hz,而做實(shí)驗(yàn)的同學(xué)并不知道,那么由此引起的系統(tǒng)誤差將使加速度的測(cè)量值比實(shí)際值偏大(填“大”或“小”)

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:選擇題

8.A、B兩質(zhì)點(diǎn)在同一直線上運(yùn)動(dòng),t=0時(shí)刻,兩質(zhì)點(diǎn)從同一地點(diǎn)運(yùn)動(dòng)的x-t圖象如圖所示,則下列說(shuō)法正確的是( 。
A.A質(zhì)點(diǎn)以20m/s的速度勻速運(yùn)動(dòng)
B.在圖示的運(yùn)動(dòng)過(guò)程中,A、B兩質(zhì)點(diǎn)之間的距離在0~4s內(nèi)某一時(shí)刻達(dá)到最大
C.經(jīng)過(guò)4s,B質(zhì)點(diǎn)的位移大于A質(zhì)點(diǎn)的位移
D.B質(zhì)點(diǎn)先沿正方向做直線運(yùn)動(dòng),后沿負(fù)方向做直線運(yùn)動(dòng)

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:多選題

5.斜面AB和CB傾角相同,A點(diǎn)和C點(diǎn)的高度相同,從A點(diǎn)處以速度v水平拋出一個(gè)小球,小球落在斜面CB的中點(diǎn)D處,則下列說(shuō)法正確的是( 。
A.當(dāng)拋出小球的速度為$\frac{2}{3}$v時(shí),小球落在斜面CB上B、D之間
B.當(dāng)拋出小球的速度為$\frac{1}{2}$v時(shí),小球落在斜面CB上B、D之間
C.當(dāng)拋出小球的速度為$\frac{1}{3}$v時(shí),小球落在斜面AB上大于D點(diǎn)高度的位置處
D.當(dāng)拋出小球的速度小于$\frac{1}{3}$v時(shí),小球初速度越小,小球落在斜面上時(shí)的速度方向與斜面夾角越小

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:計(jì)算題

12.一定質(zhì)量的理想氣體被活塞封閉在豎直放置的圓柱形氣缸內(nèi),氣缸壁導(dǎo)熱良好,活塞可沿氣缸壁無(wú)摩擦地滑動(dòng).開(kāi)始時(shí)氣體壓強(qiáng)為P,活塞下表面相對(duì)于氣缸底部的高度為h,外界的溫度為T(mén)S.現(xiàn)取質(zhì)量為m的沙子緩慢地倒在活塞的上表面,沙子倒完時(shí),活塞下降了$\frac{h}{4}$.若此后外界溫度變?yōu)門(mén),求重新達(dá)到平衡后氣體的體積.已知外界大氣的壓強(qiáng)始終保持不變,重力加速度大小為g.

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:計(jì)算題

2.$\left.\begin{array}{l}{30}\\{15}\end{array}\right.$P是人類首先制造出的放射性同位素,其半衰期為2.5min,能衰變?yōu)?\left.\begin{array}{l}{30}\\{14}\end{array}\right.$Si和一個(gè)未知粒子.
(1)寫(xiě)出該衰變的方程;
(2)已知容器中原有純$\left.\begin{array}{l}{30}\\{15}\end{array}\right.$P的質(zhì)量為m,求5min后容器中剩余$\left.\begin{array}{l}{30}\\{15}\end{array}\right.$P的質(zhì)量.

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:計(jì)算題

9.甲、乙兩車(chē)從同一地點(diǎn)同向行駛,但是甲車(chē)做勻速直線運(yùn)動(dòng),速度為v=20m/s,乙車(chē)在甲車(chē)行駛至距離出發(fā)地200m處開(kāi)始以初速度為零,加速度為a=2m/s2追甲.求:
(1)乙車(chē)追上甲車(chē)前兩車(chē)間的最大距離.
(2)做出甲、乙運(yùn)動(dòng)的速度-時(shí)間圖象.

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:實(shí)驗(yàn)題

6.如圖所示器材為某同學(xué)測(cè)繪電壓為2.5V的小電珠的I-U特性曲線的實(shí)驗(yàn)器材.

(1)根據(jù)實(shí)驗(yàn)原理,用筆畫(huà)線代替導(dǎo)線,將圖1中的實(shí)驗(yàn)電路圖連接完整.
(2)開(kāi)關(guān)S閉合之前,圖1中滑動(dòng)變阻器的滑片應(yīng)該置于A端.(選填“A端”、“B端”或“AB中間”)
(3)實(shí)驗(yàn)中測(cè)得有關(guān)數(shù)據(jù)如下表:
 U/V 0.400.80 1.20 1.60 2.00 2.40 
 I/A 0.10 0.16 0.20 0.23 0.25 0.26
根據(jù)表中的實(shí)驗(yàn)數(shù)據(jù),在圖2中畫(huà)出小燈泡的I-U特性曲線.

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:計(jì)算題

7.一物體做勻減速直線運(yùn)動(dòng),初速度為10m/s,加速度大小為1m/s2,則物體在停止運(yùn)動(dòng)前1s內(nèi)的平均速度為多大?請(qǐng)分別用兩種方法計(jì)算.

查看答案和解析>>

同步練習(xí)冊(cè)答案