精英家教網 > 高中物理 > 題目詳情
兩個物體相距為L,相互吸引力大小為F.使其中的一個物體的質量減小為原來的一半,另一個物體的質量減小為原來的1/3.如果保持它們的距離不變,則相互吸引力的大小為________;要使它們相互吸引力的大小仍為F,它們間的距離應為________.
練習冊系列答案
相關習題

科目:高中物理 來源: 題型:閱讀理解

第八部分 靜電場

第一講 基本知識介紹

在奧賽考綱中,靜電學知識點數(shù)目不算多,總數(shù)和高考考綱基本相同,但在個別知識點上,奧賽的要求顯然更加深化了:如非勻強電場中電勢的計算、電容器的連接和靜電能計算、電介質的極化等。在處理物理問題的方法上,對無限分割和疊加原理提出了更高的要求。

如果把靜電場的問題分為兩部分,那就是電場本身的問題、和對場中帶電體的研究,高考考綱比較注重第二部分中帶電粒子的運動問題,而奧賽考綱更注重第一部分和第二部分中的靜態(tài)問題。也就是說,奧賽關注的是電場中更本質的內容,關注的是縱向的深化和而非橫向的綜合。

一、電場強度

1、實驗定律

a、庫侖定律

內容;

條件:⑴點電荷,⑵真空,⑶點電荷靜止或相對靜止。事實上,條件⑴和⑵均不能視為對庫侖定律的限制,因為疊加原理可以將點電荷之間的靜電力應用到一般帶電體,非真空介質可以通過介電常數(shù)將k進行修正(如果介質分布是均勻和“充分寬廣”的,一般認為k′= k /εr)。只有條件⑶,它才是靜電學的基本前提和出發(fā)點(但這一點又是常常被忽視和被不恰當?shù)亍熬C合應用”的)。

b、電荷守恒定律

c、疊加原理

2、電場強度

a、電場強度的定義

電場的概念;試探電荷(檢驗電荷);定義意味著一種適用于任何電場的對電場的檢測手段;電場線是抽象而直觀地描述電場有效工具(電場線的基本屬性)。

b、不同電場中場強的計算

決定電場強弱的因素有兩個:場源(帶電量和帶電體的形狀)和空間位置。這可以從不同電場的場強決定式看出——

⑴點電荷:E = k

結合點電荷的場強和疊加原理,我們可以求出任何電場的場強,如——

⑵均勻帶電環(huán),垂直環(huán)面軸線上的某點P:E = ,其中r和R的意義見圖7-1。

⑶均勻帶電球殼

內部:E = 0

外部:E = k ,其中r指考察點到球心的距離

如果球殼是有厚度的的(內徑R1 、外徑R2),在殼體中(R1<r<R2):

E =  ,其中ρ為電荷體密度。這個式子的物理意義可以參照萬有引力定律當中(條件部分)的“剝皮法則”理解〔即為圖7-2中虛線以內部分的總電量…〕。

⑷無限長均勻帶電直線(電荷線密度為λ):E = 

⑸無限大均勻帶電平面(電荷面密度為σ):E = 2πkσ

二、電勢

1、電勢:把一電荷從P點移到參考點P0時電場力所做的功W與該電荷電量q的比值,即

U = 

參考點即電勢為零的點,通常取無窮遠或大地為參考點。

和場強一樣,電勢是屬于場本身的物理量。W則為電荷的電勢能。

2、典型電場的電勢

a、點電荷

以無窮遠為參考點,U = k

b、均勻帶電球殼

以無窮遠為參考點,U = k ,U = k

3、電勢的疊加

由于電勢的是標量,所以電勢的疊加服從代數(shù)加法。很顯然,有了點電荷電勢的表達式和疊加原理,我們可以求出任何電場的電勢分布。

4、電場力對電荷做功

WAB = q(UA - UB)= qUAB 

三、靜電場中的導體

靜電感應→靜電平衡(狹義和廣義)→靜電屏蔽

1、靜電平衡的特征可以總結為以下三層含義——

a、導體內部的合場強為零;表面的合場強不為零且一般各處不等,表面的合場強方向總是垂直導體表面。

b、導體是等勢體,表面是等勢面。

c、導體內部沒有凈電荷;孤立導體的凈電荷在表面的分布情況取決于導體表面的曲率。

2、靜電屏蔽

導體殼(網罩)不接地時,可以實現(xiàn)外部對內部的屏蔽,但不能實現(xiàn)內部對外部的屏蔽;導體殼(網罩)接地后,既可實現(xiàn)外部對內部的屏蔽,也可實現(xiàn)內部對外部的屏蔽。

四、電容

1、電容器

孤立導體電容器→一般電容器

2、電容

a、定義式 C = 

b、決定式。決定電容器電容的因素是:導體的形狀和位置關系、絕緣介質的種類,所以不同電容器有不同的電容

⑴平行板電容器 C =  =  ,其中ε為絕對介電常數(shù)(真空中ε0 =  ,其它介質中ε= ),εr則為相對介電常數(shù),εr =  。

⑵柱形電容器:C = 

⑶球形電容器:C = 

3、電容器的連接

a、串聯(lián)  = +++ … +

b、并聯(lián) C = C1 + C2 + C3 + … + Cn 

4、電容器的能量

用圖7-3表征電容器的充電過程,“搬運”電荷做功W就是圖中陰影的面積,這也就是電容器的儲能E ,所以

E = q0U0 = C = 

電場的能量。電容器儲存的能量究竟是屬于電荷還是屬于電場?正確答案是后者,因此,我們可以將電容器的能量用場強E表示。

對平行板電容器 E = E2 

認為電場能均勻分布在電場中,則單位體積的電場儲能 w = E2 。而且,這以結論適用于非勻強電場。

五、電介質的極化

1、電介質的極化

a、電介質分為兩類:無極分子和有極分子,前者是指在沒有外電場時每個分子的正、負電荷“重心”彼此重合(如氣態(tài)的H2 、O2 、N2和CO2),后者則反之(如氣態(tài)的H2O 、SO2和液態(tài)的水硝基笨)

b、電介質的極化:當介質中存在外電場時,無極分子會變?yōu)橛袠O分子,有極分子會由原來的雜亂排列變成規(guī)則排列,如圖7-4所示。

2、束縛電荷、自由電荷、極化電荷與宏觀過剩電荷

a、束縛電荷與自由電荷:在圖7-4中,電介質左右兩端分別顯現(xiàn)負電和正電,但這些電荷并不能自由移動,因此稱為束縛電荷,除了電介質,導體中的原子核和內層電子也是束縛電荷;反之,能夠自由移動的電荷稱為自由電荷。事實上,導體中存在束縛電荷與自由電荷,絕緣體中也存在束縛電荷和自由電荷,只是它們的比例差異較大而已。

b、極化電荷是更嚴格意義上的束縛電荷,就是指圖7-4中電介質兩端顯現(xiàn)的電荷。而宏觀過剩電荷是相對極化電荷來說的,它是指可以自由移動的凈電荷。宏觀過剩電荷與極化電荷的重要區(qū)別是:前者能夠用來沖放電,也能用儀表測量,但后者卻不能。

第二講 重要模型與專題

一、場強和電場力

【物理情形1】試證明:均勻帶電球殼內部任意一點的場強均為零。

【模型分析】這是一個疊加原理應用的基本事例。

如圖7-5所示,在球殼內取一點P ,以P為頂點做兩個對頂?shù)、頂角很小的錐體,錐體與球面相交得到球面上的兩個面元ΔS1和ΔS2 ,設球面的電荷面密度為σ,則這兩個面元在P點激發(fā)的場強分別為

ΔE1 = k

ΔE2 = k

為了弄清ΔE1和ΔE2的大小關系,引進錐體頂部的立體角ΔΩ ,顯然

 = ΔΩ = 

所以 ΔE1 = k ,ΔE2 = k ,即:ΔE1 = ΔE2 ,而它們的方向是相反的,故在P點激發(fā)的合場強為零。

同理,其它各個相對的面元ΔS3和ΔS4 、ΔS5和ΔS6  激發(fā)的合場強均為零。原命題得證。

【模型變換】半徑為R的均勻帶電球面,電荷的面密度為σ,試求球心處的電場強度。

【解析】如圖7-6所示,在球面上的P處取一極小的面元ΔS ,它在球心O點激發(fā)的場強大小為

ΔE = k ,方向由P指向O點。

無窮多個這樣的面元激發(fā)的場強大小和ΔS激發(fā)的完全相同,但方向各不相同,它們矢量合成的效果怎樣呢?這里我們要大膽地預見——由于由于在x方向、y方向上的對稱性,Σ = Σ = 0 ,最后的ΣE = ΣEz ,所以先求

ΔEz = ΔEcosθ= k ,而且ΔScosθ為面元在xoy平面的投影,設為ΔS′

所以 ΣEz = ΣΔS′

 ΣΔS′= πR2 

【答案】E = kπσ ,方向垂直邊界線所在的平面。

〖學員思考〗如果這個半球面在yoz平面的兩邊均勻帶有異種電荷,面密度仍為σ,那么,球心處的場強又是多少?

〖推薦解法〗將半球面看成4個球面,每個球面在x、y、z三個方向上分量均為 kπσ,能夠對稱抵消的將是y、z兩個方向上的分量,因此ΣE = ΣEx …

〖答案〗大小為kπσ,方向沿x軸方向(由帶正電的一方指向帶負電的一方)。

【物理情形2】有一個均勻的帶電球體,球心在O點,半徑為R ,電荷體密度為ρ ,球體內有一個球形空腔,空腔球心在O′點,半徑為R′,= a ,如圖7-7所示,試求空腔中各點的場強。

【模型分析】這里涉及兩個知識的應用:一是均勻帶電球體的場強定式(它也是來自疊加原理,這里具體用到的是球體內部的結論,即“剝皮法則”),二是填補法。

將球體和空腔看成完整的帶正電的大球和帶負電(電荷體密度相等)的小球的集合,對于空腔中任意一點P ,設 = r1 , = r2 ,則大球激發(fā)的場強為

E1 = k = kρπr1 ,方向由O指向P

“小球”激發(fā)的場強為

E2 = k = kρπr2 ,方向由P指向O′

E1和E2的矢量合成遵從平行四邊形法則,ΣE的方向如圖。又由于矢量三角形PE1ΣE和空間位置三角形OP O′是相似的,ΣE的大小和方向就不難確定了。

【答案】恒為kρπa ,方向均沿O → O′,空腔里的電場是勻強電場。

〖學員思考〗如果在模型2中的OO′連線上O′一側距離O為b(b>R)的地方放一個電量為q的點電荷,它受到的電場力將為多大?

〖解說〗上面解法的按部就班應用…

〖答〗πkρq〔?〕。

二、電勢、電量與電場力的功

【物理情形1】如圖7-8所示,半徑為R的圓環(huán)均勻帶電,電荷線密度為λ,圓心在O點,過圓心跟環(huán)面垂直的軸線上有P點, = r ,以無窮遠為參考點,試求P點的電勢U。

【模型分析】這是一個電勢標量疊加的簡單模型。先在圓環(huán)上取一個元段ΔL ,它在P點形成的電勢

ΔU = k

環(huán)共有段,各段在P點形成的電勢相同,而且它們是標量疊加。

【答案】UP = 

〖思考〗如果上題中知道的是環(huán)的總電量Q ,則UP的結論為多少?如果這個總電量的分布不是均勻的,結論會改變嗎?

〖答〗UP =  ;結論不會改變。

〖再思考〗將環(huán)換成半徑為R的薄球殼,總電量仍為Q ,試問:(1)當電量均勻分布時,球心電勢為多少?球內(包括表面)各點電勢為多少?(2)當電量不均勻分布時,球心電勢為多少?球內(包括表面)各點電勢為多少?

〖解說〗(1)球心電勢的求解從略;

球內任一點的求解參看圖7-5

ΔU1 = k= k·= kσΔΩ

ΔU2 = kσΔΩ

它們代數(shù)疊加成 ΔU = ΔU1 + ΔU2 = kσΔΩ

而 r1 + r2 = 2Rcosα

所以 ΔU = 2RkσΔΩ

所有面元形成電勢的疊加 ΣU = 2RkσΣΔΩ

注意:一個完整球面的ΣΔΩ = 4π(單位:球面度sr),但作為對頂?shù)腻F角,ΣΔΩ只能是2π ,所以——

ΣU = 4πRkσ= k

(2)球心電勢的求解和〖思考〗相同;

球內任一點的電勢求解可以從(1)問的求解過程得到結論的反證。

〖答〗(1)球心、球內任一點的電勢均為k ;(2)球心電勢仍為k ,但其它各點的電勢將隨電量的分布情況的不同而不同(內部不再是等勢體,球面不再是等勢面)。

【相關應用】如圖7-9所示,球形導體空腔內、外壁的半徑分別為R1和R2 ,帶有凈電量+q ,現(xiàn)在其內部距球心為r的地方放一個電量為+Q的點電荷,試求球心處的電勢。

【解析】由于靜電感應,球殼的內、外壁形成兩個帶電球殼。球心電勢是兩個球殼形成電勢、點電荷形成電勢的合效果。

根據(jù)靜電感應的嘗試,內壁的電荷量為-Q ,外壁的電荷量為+Q+q ,雖然內壁的帶電是不均勻的,根據(jù)上面的結論,其在球心形成的電勢仍可以應用定式,所以…

【答案】Uo = k - k + k 

〖反饋練習〗如圖7-10所示,兩個極薄的同心導體球殼A和B,半徑分別為RA和RB ,現(xiàn)讓A殼接地,而在B殼的外部距球心d的地方放一個電量為+q的點電荷。試求:(1)A球殼的感應電荷量;(2)外球殼的電勢。

〖解說〗這是一個更為復雜的靜電感應情形,B殼將形成圖示的感應電荷分布(但沒有凈電量),A殼的情形未畫出(有凈電量),它們的感應電荷分布都是不均勻的。

此外,我們還要用到一個重要的常識:接地導體(A殼)的電勢為零。但值得注意的是,這里的“為零”是一個合效果,它是點電荷q 、A殼、B殼(帶同樣電荷時)單獨存在時在A中形成的的電勢的代數(shù)和,所以,當我們以球心O點為對象,有

UO = k + k + k = 0

QB應指B球殼上的凈電荷量,故 QB = 0

所以 QA = -q

☆學員討論:A殼的各處電勢均為零,我們的方程能不能針對A殼表面上的某點去列?(答:不能,非均勻帶電球殼的球心以外的點不能應用定式。

基于剛才的討論,求B的電勢時也只能求B的球心的電勢(獨立的B殼是等勢體,球心電勢即為所求)——

UB = k + k

〖答〗(1)QA = -q ;(2)UB = k(1-) 。

【物理情形2】圖7-11中,三根實線表示三根首尾相連的等長絕緣細棒,每根棒上的電荷分布情況與絕緣棒都換成導體棒時完全相同。點A是Δabc的中心,點B則與A相對bc棒對稱,且已測得它們的電勢分別為UA和UB 。試問:若將ab棒取走,A、B兩點的電勢將變?yōu)槎嗌伲?/p>

【模型分析】由于細棒上的電荷分布既不均勻、三根細棒也沒有構成環(huán)形,故前面的定式不能直接應用。若用元段分割→疊加,也具有相當?shù)睦щy。所以這里介紹另一種求電勢的方法。

每根細棒的電荷分布雖然復雜,但相對各自的中點必然是對稱的,而且三根棒的總電量、分布情況彼此必然相同。這就意味著:①三棒對A點的電勢貢獻都相同(可設為U1);②ab棒、ac棒對B點的電勢貢獻相同(可設為U2);③bc棒對A、B兩點的貢獻相同(為U1)。

所以,取走ab前  3U1 = UA

                 2U2 + U1 = UB

取走ab后,因三棒是絕緣體,電荷分布不變,故電勢貢獻不變,所以

  UA′= 2U1

                 UB′= U1 + U2

【答案】UA′= UA ;UB′= UA + UB 。

〖模型變換〗正四面體盒子由彼此絕緣的四塊導體板構成,各導體板帶電且電勢分別為U1 、U2 、U3和U4 ,則盒子中心點O的電勢U等于多少?

〖解說〗此處的四塊板子雖然位置相對O點具有對稱性,但電量各不相同,因此對O點的電勢貢獻也不相同,所以應該想一點辦法——

我們用“填補法”將電量不對稱的情形加以改觀:先將每一塊導體板復制三塊,作成一個正四面體盒子,然后將這四個盒子位置重合地放置——構成一個有四層壁的新盒子。在這個新盒子中,每個壁的電量將是完全相同的(為原來四塊板的電量之和)、電勢也完全相同(為U1 + U2 + U3 + U4),新盒子表面就構成了一個等勢面、整個盒子也是一個等勢體,故新盒子的中心電勢為

U′= U1 + U2 + U3 + U4 

最后回到原來的單層盒子,中心電勢必為 U =  U′

〖答〗U = (U1 + U2 + U3 + U4)。

☆學員討論:剛才的這種解題思想是否適用于“物理情形2”?(答:不行,因為三角形各邊上電勢雖然相等,但中點的電勢和邊上的并不相等。)

〖反饋練習〗電荷q均勻分布在半球面ACB上,球面半徑為R ,CD為通過半球頂點C和球心O的軸線,如圖7-12所示。P、Q為CD軸線上相對O點對稱的兩點,已知P點的電勢為UP ,試求Q點的電勢UQ 。

〖解說〗這又是一個填補法的應用。將半球面補成完整球面,并令右邊內、外層均勻地帶上電量為q的電荷,如圖7-12所示。

從電量的角度看,右半球面可以看作不存在,故這時P、Q的電勢不會有任何改變。

而換一個角度看,P、Q的電勢可以看成是兩者的疊加:①帶電量為2q的完整球面;②帶電量為-q的半球面。

考查P點,UP = k + U半球面

其中 U半球面顯然和為填補時Q點的電勢大小相等、符號相反,即 U半球面= -UQ 

以上的兩個關系已經足以解題了。

〖答〗UQ = k - UP 。

【物理情形3】如圖7-13所示,A、B兩點相距2L ,圓弧是以B為圓心、L為半徑的半圓。A處放有電量為q的電荷,B處放有電量為-q的點電荷。試問:(1)將單位正電荷從O點沿移到D點,電場力對它做了多少功?(2)將單位負電荷從D點沿AB的延長線移到無窮遠處去,電場力對它做多少功?

【模型分析】電勢疊加和關系WAB = q(UA - UB)= qUAB的基本應用。

UO = k + k = 0

UD = k + k = -

U = 0

再用功與電勢的關系即可。

【答案】(1);(2)。 

【相關應用】在不計重力空間,有A、B兩個帶電小球,電量分別為q1和q2 ,質量分別為m1和m2 ,被固定在相距L的兩點。試問:(1)若解除A球的固定,它能獲得的最大動能是多少?(2)若同時解除兩球的固定,它們各自的獲得的最大動能是多少?(3)未解除固定時,這個系統(tǒng)的靜電勢能是多少?

【解說】第(1)問甚間;第(2)問在能量方面類比反沖裝置的能量計算,另啟用動量守恒關系;第(3)問是在前兩問基礎上得出的必然結論…(這里就回到了一個基本的觀念斧正:勢能是屬于場和場中物體的系統(tǒng),而非單純屬于場中物體——這在過去一直是被忽視的。在兩個點電荷的環(huán)境中,我們通常說“兩個點電荷的勢能”是多少。)

【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 。

〖思考〗設三個點電荷的電量分別為q1 、q2和q3 ,兩兩相距為r12 、r23和r31 ,則這個點電荷系統(tǒng)的靜電勢能是多少?

〖解〗略。

〖答〗k(++)。

〖反饋應用〗如圖7-14所示,三個帶同種電荷的相同金屬小球,每個球的質量均為m 、電量均為q ,用長度為L的三根絕緣輕繩連接著,系統(tǒng)放在光滑、絕緣的水平面上,F(xiàn)將其中的一根繩子剪斷,三個球將開始運動起來,試求中間這個小球的最大速度。

〖解〗設剪斷的是1、3之間的繩子,動力學分析易知,2球獲得最大動能時,1、2之間的繩子與2、3之間的繩子剛好應該在一條直線上。而且由動量守恒知,三球不可能有沿繩子方向的速度。設2球的速度為v ,1球和3球的速度為v′,則

動量關系 mv + 2m v′= 0

能量關系 3k = 2 k + k + mv2 + 2m

解以上兩式即可的v值。

〖答〗v = q 。

三、電場中的導體和電介質

【物理情形】兩塊平行放置的很大的金屬薄板A和B,面積都是S ,間距為d(d遠小于金屬板的線度),已知A板帶凈電量+Q1 ,B板帶盡電量+Q2 ,且Q2<Q1 ,試求:(1)兩板內外表面的電量分別是多少;(2)空間各處的場強;(3)兩板間的電勢差。

【模型分析】由于靜電感應,A、B兩板的四個平面的電量將呈現(xiàn)一定規(guī)律的分布(金屬板雖然很薄,但內部合場強為零的結論還是存在的);這里應注意金屬板“很大”的前提條件,它事實上是指物理無窮大,因此,可以應用無限大平板的場強定式。

為方便解題,做圖7-15,忽略邊緣效應,四個面的電荷分布應是均勻的,設四個面的電荷面密度分別為σ1 、σ2 、σ3和σ4 ,顯然

(σ1 + σ2)S = Q1 

(σ3 + σ4)S = Q2 

A板內部空間場強為零,有 2πk(σ1 ? σ2 ? σ3 ? σ4)= 0

A板內部空間場強為零,有 2πk(σ1 + σ2 + σ3 ? σ4)= 0

解以上四式易得 σ1 = σ4 = 

               σ2 = ?σ3 = 

有了四個面的電荷密度,Ⅰ、Ⅱ、Ⅲ空間的場強就好求了〔如E =2πk(σ1 + σ2 ? σ3 ? σ4)= 2πk〕。

最后,UAB = Ed

【答案】(1)A板外側電量、A板內側電量,B板內側電量?、B板外側電量;(2)A板外側空間場強2πk,方向垂直A板向外,A、B板之間空間場強2πk,方向由A垂直指向B,B板外側空間場強2πk,方向垂直B板向外;(3)A、B兩板的電勢差為2πkd,A板電勢高。

〖學員思考〗如果兩板帶等量異號的凈電荷,兩板的外側空間場強等于多少?(答:為零。)

〖學員討論〗(原模型中)作為一個電容器,它的“電量”是多少(答:)?如果在板間充滿相對介電常數(shù)為εr的電介質,是否會影響四個面的電荷分布(答:不會)?是否會影響三個空間的場強(答:只會影響Ⅱ空間的場強)?

〖學員討論〗(原模型中)我們是否可以求出A、B兩板之間的靜電力?〔答:可以;以A為對象,外側受力·(方向相左),內側受力·(方向向右),它們合成即可,結論為F = Q1Q2 ,排斥力!

【模型變換】如圖7-16所示,一平行板電容器,極板面積為S ,其上半部為真空,而下半部充滿相對介電常數(shù)為εr的均勻電介質,當兩極板分別帶上+Q和?Q的電量后,試求:(1)板上自由電荷的分布;(2)兩板之間的場強;(3)介質表面的極化電荷。

【解說】電介質的充入雖然不能改變內表面的電量總數(shù),但由于改變了場強,故對電荷的分布情況肯定有影響。設真空部分電量為Q1 ,介質部分電量為Q2 ,顯然有

Q1 + Q2 = Q

兩板分別為等勢體,將電容器看成上下兩個電容器的并聯(lián),必有

U1 = U2   =  ,即  = 

解以上兩式即可得Q1和Q2 。

場強可以根據(jù)E = 關系求解,比較常規(guī)(上下部分的場強相等)。

上下部分的電量是不等的,但場強居然相等,這怎么解釋?從公式的角度看,E = 2πkσ(單面平板),當k 、σ同時改變,可以保持E不變,但這是一種結論所展示的表象。從內在的角度看,k的改變正是由于極化電荷的出現(xiàn)所致,也就是說,極化電荷的存在相當于在真空中形成了一個新的電場,正是這個電場與自由電荷(在真空中)形成的電場疊加成為E2 ,所以

E2 = 4πk(σ ? σ′)= 4πk( ? 

請注意:①這里的σ′和Q′是指極化電荷的面密度和總量;② E = 4πkσ的關系是由兩個帶電面疊加的合效果。

【答案】(1)真空部分的電量為Q ,介質部分的電量為Q ;(2)整個空間的場強均為 ;(3)Q 。

〖思考應用〗一個帶電量為Q的金屬小球,周圍充滿相對介電常數(shù)為εr的均勻電介質,試求與與導體表面接觸的介質表面的極化電荷量。

〖解〗略。

〖答〗Q′= Q 。

四、電容器的相關計算

【物理情形1】由許多個電容為C的電容器組成一個如圖7-17所示的多級網絡,試問:(1)在最后一級的右邊并聯(lián)一個多大電容C′,可使整個網絡的A、B兩端電容也為C′?(2)不接C′,但無限地增加網絡的級數(shù),整個網絡A、B兩端的總電容是多少?

【模型分析】這是一個練習電容電路簡化基本事例。

第(1)問中,未給出具體級數(shù),一般結論應適用特殊情形:令級數(shù)為1 ,于是

 +  =  解C′即可。

第(2)問中,因為“無限”,所以“無限加一級后仍為無限”,不難得出方程

 +  = 

【答案】(1)C ;(2)C 。

【相關模型】在圖7-18所示的電路中,已知C1 = C2 = C3 = C9 = 1μF ,C4 = C5 = C6 = C7 = 2μF ,C8 = C10 = 3μF ,試求A、B之間的等效電容。

【解說】對于既非串聯(lián)也非并聯(lián)的電路,需要用到一種“Δ→Y型變換”,參見圖7-19,根據(jù)三個端點之間的電容等效,容易得出定式——

Δ→Y型:Ca = 

          Cb = 

          Cc = 

Y→Δ型:C1 = 

         C2 = 

         C3 = 

有了這樣的定式后,我們便可以進行如圖7-20所示的四步電路簡化(為了方便,電容不宜引進新的符號表達,而是直接將變換后的量值標示在圖中)——

【答】約2.23μF 。

【物理情形2】如圖7-21所示的電路中,三個電容器完全相同,電源電動勢ε1 = 3.0V ,ε2 = 4.5V,開關K1和K2接通前電容器均未帶電,試求K1和K2接通后三個電容器的電壓Uao 、Ubo和Uco各為多少。

【解說】這是一個考查電容器電路的基本習題,解題的關鍵是要抓與o相連的三塊極板(俗稱“孤島”)的總電量為零。

電量關系:++= 0

電勢關系:ε1 = Uao + Uob = Uao ? Ubo 

          ε2 = Ubo + Uoc = Ubo ? Uco 

解以上三式即可。

【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = ?4.0V 。

【伸展應用】如圖7-22所示,由n個單元組成的電容器網絡,每一個單元由三個電容器連接而成,其中有兩個的電容為3C ,另一個的電容為3C 。以a、b為網絡的輸入端,a′、b′為輸出端,今在a、b間加一個恒定電壓U ,而在a′b′間接一個電容為C的電容器,試求:(1)從第k單元輸入端算起,后面所有電容器儲存的總電能;(2)若把第一單元輸出端與后面斷開,再除去電源,并把它的輸入端短路,則這個單元的三個電容器儲存的總電能是多少?

【解說】這是一個結合網絡計算和“孤島現(xiàn)象”的典型事例。

(1)類似“物理情形1”的計算,可得 C = Ck = C

所以,從輸入端算起,第k單元后的電壓的經驗公式為 Uk = 

再算能量儲存就不難了。

(2)斷開前,可以算出第一單元的三個電容器、以及后面“系統(tǒng)”的電量分配如圖7-23中的左圖所示。這時,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤島”。此后,電容器的相互充電過程(C3類比為“電源”)滿足——

電量關系:Q1′= Q3

          Q2′+ Q3′= 

電勢關系: = 

從以上三式解得 Q1′= Q3′=  ,Q2′=  ,這樣系統(tǒng)的儲能就可以用得出了。

【答】(1)Ek = ;(2) 。

〖學員思考〗圖7-23展示的過程中,始末狀態(tài)的電容器儲能是否一樣?(答:不一樣;在相互充電的過程中,導線消耗的焦耳熱已不可忽略。)

☆第七部分完☆

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

第三部分 運動學

第一講 基本知識介紹

一. 基本概念

1.  質點

2.  參照物

3.  參照系——固連于參照物上的坐標系(解題時要記住所選的是參照系,而不僅是一個點)

4.絕對運動,相對運動,牽連運動:v=v+v 

二.運動的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大學教材中表述為:v=dr/dt, 表示r對t 求導數(shù)

5.以上是運動學中的基本物理量,也就是位移、位移的一階導數(shù)、位移的二階導數(shù)。可是

三階導數(shù)為什么不是呢?因為牛頓第二定律是F=ma,即直接和加速度相聯(lián)系。(a對t的導數(shù)叫“急動度”。)

6.由于以上三個量均為矢量,所以在運算中用分量表示一般比較好

三.等加速運動

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道經典的物理問題:二次世界大戰(zhàn)中物理學家曾經研究,當大炮的位置固定,以同一速度v0沿各種角度發(fā)射,問:當飛機在哪一區(qū)域飛行之外時,不會有危險?(注:結論是這一區(qū)域為一拋物線,此拋物線是所有炮彈拋物線的包絡線。此拋物線為在大炮上方h=v2/2g處,以v0平拋物體的軌跡。) 

練習題:

一盞燈掛在離地板高l2,天花板下面l1處。燈泡爆裂,所有碎片以同樣大小的速度v 朝各個方向飛去。求碎片落到地板上的半徑(認為碎片和天花板的碰撞是完全彈性的,即切向速度不變,法向速度反向;碎片和地板的碰撞是完全非彈性的,即碰后靜止。)

四.剛體的平動和定軸轉動

1. 我們講過的圓周運動是平動而不是轉動 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是標量,而極小的角位移是矢量

4.  同一剛體上兩點的相對速度和相對加速度 

兩點的相對距離不變,相對運動軌跡為圓弧,VA=VB+VAB,在AB連線上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三質點速度分別V,VB  ,VC      

求G的速度。

五.課后習題:

一只木筏離開河岸,初速度為V,方向垂直于岸邊,航行路線如圖。經過時間T木筏劃到路線上標有符號處。河水速度恒定U用作圖法找到在2T,3T,4T時刻木筏在航線上的確切位置。

五、處理問題的一般方法

(1)用微元法求解相關速度問題

例1:如圖所示,物體A置于水平面上,A前固定一滑輪B,高臺上有一定滑輪D,一根輕繩一端固定在C點,再繞過B、D,BC段水平,當以恒定水平速度v拉繩上的自由端時,A沿水平面前進,求當跨過B的兩段繩子的夾角為α時,A的運動速度。

(vA

(2)拋體運動問題的一般處理方法

  1. 平拋運動
  2. 斜拋運動
  3. 常見的處理方法

(1)將斜上拋運動分解為水平方向的勻速直線運動和豎直方向的豎直上拋運動

(2)將沿斜面和垂直于斜面方向作為x、y軸,分別分解初速度和加速度后用運動學公式解題

(3)將斜拋運動分解為沿初速度方向的斜向上的勻速直線運動和自由落體運動兩個分運動,用矢量合成法則求解

例2:在擲鉛球時,鉛球出手時距地面的高度為h,若出手時的速度為V0,求以何角度擲球時,水平射程最遠?最遠射程為多少?

(α=、 x=

第二講 運動的合成與分解、相對運動

(一)知識點點撥

  1. 力的獨立性原理:各分力作用互不影響,單獨起作用。
  2. 運動的獨立性原理:分運動之間互不影響,彼此之間滿足自己的運動規(guī)律
  3. 力的合成分解:遵循平行四邊形定則,方法有正交分解,解直角三角形等
  4. 運動的合成分解:矢量合成分解的規(guī)律方法適用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

參考系的轉換:動參考系,靜參考系

相對運動:動點相對于動參考系的運動

絕對運動:動點相對于靜參考系統(tǒng)(通常指固定于地面的參考系)的運動

牽連運動:動參考系相對于靜參考系的運動

(5)位移合成定理:SA對地=SAB+SB對地

速度合成定理:V絕對=V相對+V牽連

加速度合成定理:a絕對=a相對+a牽連

(二)典型例題

(1)火車在雨中以30m/s的速度向南行駛,雨滴被風吹向南方,在地球上靜止的觀察者測得雨滴的徑跡與豎直方向成21角,而坐在火車里乘客看到雨滴的徑跡恰好豎直方向。求解雨滴相對于地的運動。

提示:矢量關系入圖

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定樓梯,又以不同方式上了兩趟自動扶梯,為什么他可以根據(jù)測得的數(shù)據(jù)來計算自動扶梯的臺階數(shù)?

提示:V人對梯=n1/t1

      V梯對地=n/t2

      V人對地=n/t3

V人對地= V人對梯+ V梯對地

答案:n=t2t3n1/(t2-t3)t1

(3)某人駕船從河岸A處出發(fā)橫渡,如果使船頭保持跟河岸垂直的方向航行,則經10min后到達正對岸下游120m的C處,如果他使船逆向上游,保持跟河岸成а角的方向航行,則經過12.5min恰好到達正對岸的B處,求河的寬度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河寬l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,為了使小船靠岸時,不至于被沖進瀑布中,船對水的最小速度為多少?

提示:如圖船航行

答案:1.58m/s

(三)同步練習

1.一輛汽車的正面玻璃一次安裝成與水平方向傾斜角為β1=30°,另一次安裝成傾角為β2=15°。問汽車兩次速度之比為多少時,司機都是看見冰雹都是以豎直方向從車的正面玻璃上彈開?(冰雹相對地面是豎直下落的)

2、模型飛機以相對空氣v=39km/h的速度繞一個邊長2km的等邊三角形飛行,設風速u = 21km/h ,方向與三角形的一邊平行并與飛機起飛方向相同,試求:飛機繞三角形一周需多少時間?

3.圖為從兩列蒸汽機車上冒出的兩股長幅氣霧拖尾的照片(俯視)。兩列車沿直軌道分別以速度v1=50km/h和v2=70km/h行駛,行駛方向如箭頭所示,求風速。

4、細桿AB長L ,兩端分別約束在x 、 y軸上運動,(1)試求桿上與A點相距aL(0< a <1)的P點運動軌跡;(2)如果vA為已知,試求P點的x 、 y向分速度vPx和vPy對桿方位角θ的函數(shù)。

(四)同步練習提示與答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案為:3。

2、提示:三角形各邊的方向為飛機合速度的方向(而非機頭的指向);

第二段和第三段大小相同。

參見右圖,顯然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法與練習一類似。答案為:3

4、提示:(1)寫成參數(shù)方程后消參數(shù)θ。

(2)解法有講究:以A端為參照, 則桿上各點只繞A轉動。但鑒于桿子的實際運動情形如右圖,應有v = vAcosθ,v = vA,可知B端相對A的轉動線速度為:v + vAsinθ=  。

P點的線速度必為  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,為橢圓;(2)vPx = avActgθ ,vPy =(1 - a)vA

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

第二部分  牛頓運動定律

第一講 牛頓三定律

一、牛頓第一定律

1、定律。慣性的量度

2、觀念意義,突破“初態(tài)困惑”

二、牛頓第二定律

1、定律

2、理解要點

a、矢量性

b、獨立作用性:ΣF → a ,ΣFx → ax 

c、瞬時性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。

3、適用條件

a、宏觀、低速

b、慣性系

對于非慣性系的定律修正——引入慣性力、參與受力分析

三、牛頓第三定律

1、定律

2、理解要點

a、同性質(但不同物體)

b、等時效(同增同減)

c、無條件(與運動狀態(tài)、空間選擇無關)

第二講 牛頓定律的應用

一、牛頓第一、第二定律的應用

單獨應用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個環(huán)節(jié)。

應用要點:合力為零時,物體靠慣性維持原有運動狀態(tài);只有物體有加速度時才需要合力。有質量的物體才有慣性。a可以突變而v、s不可突變。

1、如圖1所示,在馬達的驅動下,皮帶運輸機上方的皮帶以恒定的速度向右運動,F(xiàn)將一工件(大小不計)在皮帶左端A點輕輕放下,則在此后的過程中(      

A、一段時間內,工件將在滑動摩擦力作用下,對地做加速運動

B、當工件的速度等于v時,它與皮帶之間的摩擦力變?yōu)殪o摩擦力

C、當工件相對皮帶靜止時,它位于皮帶上A點右側的某一點

D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態(tài)

解說:B選項需要用到牛頓第一定律,A、C、D選項用到牛頓第二定律。

較難突破的是A選項,在為什么不會“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a →  ,則ΣFx   ,必然會出現(xiàn)“供不應求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對滑動?因為人是可以形變、重心可以調節(jié)的特殊“物體”)

此外,本題的D選項還要用到勻變速運動規(guī)律。用勻變速運動規(guī)律和牛頓第二定律不難得出

只有當L > 時(其中μ為工件與皮帶之間的動摩擦因素),才有相對靜止的過程,否則沒有。

答案:A、D

思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達皮帶右端的時間t(過程略,答案為5.5s)

進階練習:在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學生分以下三組進行)——

① v0 = 1m/s  (答:0.5 + 37/8 = 5.13s)

② v0 = 4m/s  (答:1.0 + 3.5 = 4.5s)

③ v0 = 1m/s  (答:1.55s)

2、質量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:

① 如果在P處剪斷細繩,在剪斷瞬時,B的加速度是多少?

② 如果在Q處剪斷彈簧,在剪斷瞬時,B的加速度又是多少?

解說:第①問是常規(guī)處理。由于“彈簧不會立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時B鉤碼的加速度為零(A的加速度則為2g)。

第②問需要我們反省這樣一個問題:“彈簧不會立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點剪斷彈簧時,彈簧卻是沒有慣性的(沒有質量),遵從理想模型的條件,彈簧應在一瞬間恢復原長!即彈簧彈力突變?yōu)榱恪?/p>

答案:0 ;g 。

二、牛頓第二定律的應用

應用要點:受力較少時,直接應用牛頓第二定律的“矢量性”解題。受力比較多時,結合正交分解與“獨立作用性”解題。

在難度方面,“瞬時性”問題相對較大。

1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。

解說:受力分析 → 根據(jù)“矢量性”定合力方向  牛頓第二定律應用

答案:gsinθ。

思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應具備一個多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環(huán)節(jié)上應注意區(qū)別。答:gtgθ。)

進階練習1:在一向右運動的車廂中,用細繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)

進階練習2、如圖4所示,小車在傾角為α的斜面上勻加速運動,車廂頂用細繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個穩(wěn)定的夾角β。試求小車的加速度。

解:繼續(xù)貫徹“矢量性”的應用,但數(shù)學處理復雜了一些(正弦定理解三角形)。

分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應的夾角。設張力T與斜面方向的夾角為θ,則

θ=(90°+ α)- β= 90°-(β-α)                 (1)

對灰色三角形用正弦定理,有

 =                                        (2)

解(1)(2)兩式得:ΣF = 

最后運用牛頓第二定律即可求小球加速度(即小車加速度)

答: 。

2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運動。斜面上用一條與斜面平行的細繩系一質量為m的小球,當斜面加速度為a時(a<ctgθ),小球能夠保持相對斜面靜止。試求此時繩子的張力T 。

解說:當力的個數(shù)較多,不能直接用平行四邊形尋求合力時,宜用正交分解處理受力,在對應牛頓第二定律的“獨立作用性”列方程。

正交坐標的選擇,視解題方便程度而定。

解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程

ΣFx = ma ,即Tx - Nx = ma

ΣFy = 0 , 即Ty + Ny = mg

代入方位角θ,以上兩式成為

T cosθ-N sinθ = ma                       (1)

T sinθ + Ncosθ = mg                       (2)

這是一個關于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ

解法二:下面嘗試一下能否獨立地解張力T 。將正交分解的坐標選擇為:x——斜面方向,y——和斜面垂直的方向。這時,在分解受力時,只分解重力G就行了,但值得注意,加速度a不在任何一個坐標軸上,是需要分解的。矢量分解后,如圖8所示。

根據(jù)獨立作用性原理,ΣFx = max

即:T - Gx = max

即:T - mg sinθ = m acosθ

顯然,獨立解T值是成功的。結果與解法一相同。

答案:mgsinθ + ma cosθ

思考:當a>ctgθ時,張力T的結果會變化嗎?(從支持力的結果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)

學生活動:用正交分解法解本節(jié)第2題“進階練習2”

進階練習:如圖9所示,自動扶梯與地面的夾角為30°,但扶梯的臺階是水平的。當扶梯以a = 4m/s2的加速度向上運動時,站在扶梯上質量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。

解:這是一個展示獨立作用性原理的經典例題,建議學生選擇兩種坐標(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進而充分領會用牛頓第二定律解題的靈活性。

答:208N 。

3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知。現(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時加速度。

解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。

(學生活動)思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時釋放,會有什么現(xiàn)象?原因是什么?

結論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。

第二步,在本例中,突破“繩子的拉力如何瞬時調節(jié)”這一難點(從即將開始的運動來反推)。

知識點,牛頓第二定律的瞬時性。

答案:a = gsinθ ;a = gtgθ 。

應用:如圖11所示,吊籃P掛在天花板上,與吊籃質量相等的物體Q被固定在吊籃中的輕彈簧托住,當懸掛吊籃的細繩被燒斷瞬間,P、Q的加速度分別是多少?

解:略。

答:2g ;0 。

三、牛頓第二、第三定律的應用

要點:在動力學問題中,如果遇到幾個研究對象時,就會面臨如何處理對象之間的力和對象與外界之間的力問題,這時有必要引進“系統(tǒng)”、“內力”和“外力”等概念,并適時地運用牛頓第三定律。

在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。

對N個對象,有N個隔離方程和一個(可能的)整體方程,這(N + 1)個方程中必有一個是通解方程,如何取舍,視解題方便程度而定。

補充:當多個對象不具有共同的加速度時,一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個局限(可以介紹推導過程)——

Σ= m1 + m2 + m3 + … + mn

其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。

1、如圖12所示,光滑水平面上放著一個長為L的均質直棒,現(xiàn)給棒一個沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關系怎樣?

解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。

答案:N = x 。

思考:如果水平面粗糙,結論又如何?

解:分兩種情況,(1)能拉動;(2)不能拉動。

第(1)情況的計算和原題基本相同,只是多了一個摩擦力的處理,結論的化簡也麻煩一些。

第(2)情況可設棒的總質量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。

答:若棒仍能被拉動,結論不變。

若棒不能被拉動,且F = μMg時(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質量),當x<(L-l),N≡0 ;當x>(L-l),N = 〔x -〈L-l〉〕。

應用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個長方體滑塊,它們的質量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:

A、μ1 m1gcosθ ;    B、μ2 m1gcosθ ;

C、μ1 m2gcosθ ;    D、μ1 m2gcosθ ;

解:略。

答:B 。(方向沿斜面向上。)

思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結論會變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應對盒子的哪一側內壁有壓力?

解:略。

答:(1)不會;(2)沒有;(3)若斜面光滑,對兩內壁均無壓力,若斜面粗糙,對斜面上方的內壁有壓力。

2、如圖15所示,三個物體質量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計,繩子的質量也不計,為使三個物體無相對滑動,水平推力F應為多少?

解說:

此題對象雖然有三個,但難度不大。隔離m2 ,豎直方向有一個平衡方程;隔離m1 ,水平方向有一個動力學方程;整體有一個動力學方程。就足以解題了。

答案:F =  。

思考:若將質量為m3物體右邊挖成凹形,讓m2可以自由擺動(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個恰當?shù)腇′,使三者無相對運動?如果沒有,說明理由;如果有,求出這個F′的值。

解:此時,m2的隔離方程將較為復雜。設繩子張力為T ,m2的受力情況如圖,隔離方程為:

 = m2a

隔離m,仍有:T = m1a

解以上兩式,可得:a = g

最后用整體法解F即可。

答:當m1 ≤ m2時,沒有適應題意的F′;當m1 > m2時,適應題意的F′=  。

3、一根質量為M的木棒,上端用細繩系在天花板上,棒上有一質量為m的貓,如圖17所示。現(xiàn)將系木棒的繩子剪斷,同時貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?

解說:法一,隔離法。需要設出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動力學方程,解方程組即可。

法二,“新整體法”。

據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:

( M + m )g = m·0 + M a1 

解棒的加速度a1十分容易。

答案:g 。

四、特殊的連接體

當系統(tǒng)中各個體的加速度不相等時,經典的整體法不可用。如果各個體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時,我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。

解題思想:抓某個方向上加速度關系。方法:“微元法”先看位移關系,再推加速度關系。、

1、如圖18所示,一質量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個質量為m的滑塊從斜面頂端釋放,試求斜面的加速度。

解說:本題涉及兩個物體,它們的加速度關系復雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時,務必在這個方向上進行突破。

(學生活動)定型判斷斜面的運動情況、滑塊的運動情況。

位移矢量示意圖如圖19所示。根據(jù)運動學規(guī)律,加速度矢量a1和a2也具有這樣的關系。

(學生活動)這兩個加速度矢量有什么關系?

沿斜面方向、垂直斜面方向建x 、y坐標,可得:

a1y = a2y             ①

且:a1y = a2sinθ     ②

隔離滑塊和斜面,受力圖如圖20所示。

對滑塊,列y方向隔離方程,有:

mgcosθ- N = ma1y     ③

對斜面,仍沿合加速度a2方向列方程,有:

Nsinθ= Ma2          ④

解①②③④式即可得a2 。

答案:a2 =  。

(學生活動)思考:如何求a1的值?

解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。

答:a1 =  。

2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動,開始時與棒的A端相距b ,相對棒靜止。當棒保持傾角θ不變地沿水平面勻加速運動,加速度為a(且a>gtgθ)時,求滑套C從棒的A端滑出所經歷的時間。

解說:這是一個比較特殊的“連接體問題”,尋求運動學參量的關系似乎比動力學分析更加重要。動力學方面,只需要隔離滑套C就行了。

(學生活動)思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)

定性繪出符合題意的運動過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標后,S1x表示S1在x方向上的分量。不難看出:

S1x + b = S cosθ                   ①

設全程時間為t ,則有:

S = at2                          ②

S1x = a1xt2                        ③

而隔離滑套,受力圖如圖23所示,顯然:

mgsinθ= ma1x                       ④

解①②③④式即可。

答案:t = 

另解:如果引進動力學在非慣性系中的修正式 Σ* = m (注:*為慣性力),此題極簡單。過程如下——

以棒為參照,隔離滑套,分析受力,如圖24所示。

注意,滑套相對棒的加速度a是沿棒向上的,故動力學方程為:

F*cosθ- mgsinθ= ma            (1)

其中F* = ma                      (2)

而且,以棒為參照,滑套的相對位移S就是b ,即:

b = S = a t2                 (3)

解(1)(2)(3)式就可以了。

第二講 配套例題選講

教材范本:龔霞玲主編《奧林匹克物理思維訓練教材》,知識出版社,2002年8月第一版。

例題選講針對“教材”第三章的部分例題和習題。

查看答案和解析>>

同步練習冊答案