【題目】已知橢圓C =1ab0),定義橢圓C上的點Mx0y0)的“伴隨點”為

1)求橢圓C上的點M的“伴隨點”N的軌跡方程;

2)如果橢圓C上的點(1)的“伴隨點”為(,),對于橢圓C上的任意點M及它的“伴隨點”N,求的取值范圍;

3)當a=2,b=時,直線l交橢圓CA,B兩點,若點AB的“伴隨點”分別是P,Q,且以PQ為直徑的圓經(jīng)過坐標原點O,求△OAB的面積.

【答案】1x2+y2=1,(2,(3

【解析】

(1)代入橢圓方程即可求得橢圓C上的點M的“伴隨點”N的軌跡方程;
2)由題意,求得橢圓的方程,根據(jù)向量的坐標運算,即可求得
3)求得橢圓方程,設(shè)方程為,代入橢圓方程,利用韋達定理,根據(jù)向量數(shù)量積的坐標求得,弦長公式及點到直線的距離公式,即可求得的面積,直線的斜率不存在時,設(shè)方程為,代入橢圓方程,即可求得的面積.

(1)設(shè),由題意,則 .

,所以

.

(2)由橢圓C上的點(1,)的“伴隨點”為(,

,得,又,則.

,在橢圓上,,且

由于,的取值范圍是.

(3)設(shè),則

當直線的斜率存在時,設(shè)其方程為,由 .

.

由以為直徑的圓經(jīng)過坐標原點可得:,.

整理得:

將①代入②得:

,則,

所以.

又點到直線的距離

所以

當直線的斜率不存在時,設(shè)其方程為

聯(lián)立橢圓方程得 ,得.

解得:,從而.

綜上:的面積是定值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個極值點,且.

1)求實數(shù)的取值范圍;

2)若,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在定義域內(nèi)某個區(qū)間,使得上的值域也是,則稱函數(shù)在定義域上封閉.如果函數(shù)上封閉,那么實數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)環(huán)保部門測定,某處的污染指數(shù)與附近污染源的強度成正比,與到污染源距離的平方成反比,比例常數(shù)為kk>0).現(xiàn)已知相距18kmAB兩家化工廠(污染源)的污染強度分別為a,b,它們連線上任意一點C處的污染指數(shù)y等于兩化工廠對該處的污染指數(shù)之和.設(shè)AC=xkm.

1)試將y表示為x的函數(shù);

2)若a=1,且x=6時,y取得最小值,試求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年諾貝爾生理學(xué)或醫(yī)學(xué)獎獲得者威廉·凱林(WilliamG.KaelinJr)在研究腎癌的抑制劑過程中使用的輸液瓶可以視為兩個圓柱的組合體.開始輸液時,滴管內(nèi)勻速滴下液體(滴管內(nèi)液體忽略不計),設(shè)輸液開始后分鐘,瓶內(nèi)液面與進氣管的距離為厘米,已知當時,.如果瓶內(nèi)的藥液恰好分鐘滴完.則函數(shù)的圖像為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,平面,點的中點,,,.

1)求證:平面平面;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差(最高溫度與最低溫度的差)大小與某反季節(jié)大豆新品種一天內(nèi)發(fā)芽數(shù)之間的關(guān)系進行了分析研究,他們分別記錄了121日至126日每天晝夜最高、最低的溫度(如圖甲),以及實驗室每天每100顆種子中的發(fā)芽數(shù)情況(如圖乙),得到如下資料:

最高溫度最低溫度

1)請畫出發(fā)芽數(shù)y與溫差x的散點圖;

2)若建立發(fā)芽數(shù)y與溫差x之間的線性回歸模型,請用相關(guān)系數(shù)說明建立模型的合理性;

3)①求出發(fā)芽數(shù)y與溫差x之間的回歸方程(系數(shù)精確到0.01);

②若127日的晝夜溫差為,通過建立的y關(guān)于x的回歸方程,估計該實驗室127日當天100顆種子的發(fā)芽數(shù).

參考數(shù)據(jù):.

參考公式:

相關(guān)系數(shù):(當時,具有較強的相關(guān)關(guān)系).

回歸方程中斜率和截距計算公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知AB、C是橢圓W上的三個點,O是坐標原點.

(I)當點BW的右頂點,且四邊形OABC為菱形時,求此菱形的面積.

(II)當點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已定義,已知函數(shù)的定義域都是,則下列四個命題中為真命題的是_________.(寫出所有真命題的序號)

都是奇函數(shù),則函數(shù)為奇函數(shù).

都是偶函數(shù),則函數(shù)為偶函數(shù).

都是增函數(shù),則函數(shù)為增函數(shù).

都是減函數(shù),則函數(shù)為減函數(shù).

查看答案和解析>>

同步練習冊答案