1.有十個互不相同的二位數(shù),求證必可從中選出兩個不相交的子集,使得這兩個子集中的元素之和相等。
2. 設(shè) n>4, 求證每一個圓內(nèi)接四邊形都可以分割成 n 個圓內(nèi)接四邊形。
3. m,n是任意非負(fù)整數(shù),求證下式是一整數(shù)。
(2m)!(2n)!
m!n!(m+n)!
4. 試找出下述方程組的所有正實(shí)數(shù)解:
(x12 - x3x5)(x22
- x3x5) <= 0
(x22 - x4x1)(x32
- x4x1) <= 0
(x32 - x5x2)(x42
- x5x2) <= 0
(x42 - x1x3)(x52
- x1x3) <= 0
(x52 - x2x4)(x12
- x2x4) <= 0
5. f、g都是定義在實(shí)數(shù)上并取值實(shí)數(shù)的函數(shù),并且滿足方程
f(x + y) + f(x - y) = 2f(x)g(y),
又已知 f 不恒等于0且 |f(x)| <= 1 。求證對所有x同樣有 |g(x)| <= 1 。
6. 給定四個不相同的平行平面,求證存在一個正四面體,它的四個定點(diǎn)分別在這四個平面上。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com