第六節(jié) 二次函數(shù)的應(yīng)用
【回顧與思考】
二次函數(shù)應(yīng)用
【例題經(jīng)典】
用二次函數(shù)解決最值問(wèn)題
例1 (2006年旅順口區(qū))已知邊長(zhǎng)為4的正方形截去一個(gè)角后成為五邊形ABCDE(如圖),其中AF=2,BF=1.試在AB上求一點(diǎn)P,使矩形PNDM有最大面積.
【評(píng)析】本題是一道代數(shù)幾何綜合題,把相似三角形與二次函數(shù)的知識(shí)有機(jī)的結(jié)合在一起,能很好考查學(xué)生的綜合應(yīng)用能力.同時(shí),也給學(xué)生探索解題思路留下了思維空間.
例2 某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售價(jià)x(元)與產(chǎn)品的日銷售量y(件)之間的關(guān)系如下表:
x(元)
15
20
30
…
y(件)
25
20
10
…
若日銷售量y是銷售價(jià)x的一次函數(shù).
(1)求出日銷售量y(件)與銷售價(jià)x(元)的函數(shù)關(guān)系式;
(2)要使每日的銷售利潤(rùn)最大,每件產(chǎn)品的銷售價(jià)應(yīng)定為多少元?此時(shí)每日銷售利潤(rùn)是多少元?
【解析】(1)設(shè)此一次函數(shù)表達(dá)式為y=kx+b.則 解得k=-1,b=40,即一次函數(shù)表達(dá)式為y=-x+40.
(2)設(shè)每件產(chǎn)品的銷售價(jià)應(yīng)定為x元,所獲銷售利潤(rùn)為w元
w=(x-10)(40-x)=-x2+50x-400=-(x-25)2+225.
產(chǎn)品的銷售價(jià)應(yīng)定為25元,此時(shí)每日獲得最大銷售利潤(rùn)為225元.
【點(diǎn)評(píng)】解決最值問(wèn)題應(yīng)用題的思路與一般應(yīng)用題類似,也有區(qū)別,主要有兩點(diǎn):(1)設(shè)未知數(shù)在“當(dāng)某某為何值時(shí),什么最大(或最小、最。钡脑O(shè)問(wèn)中,“某某”要設(shè)為自變量,“什么”要設(shè)為函數(shù);(2)問(wèn)的求解依靠配方法或最值公式,而不是解方程.
【考點(diǎn)精練】
1.二次函數(shù)y=x2+x-1,當(dāng)x=______時(shí),y有最_____值,這個(gè)值是________.
2.在距離地面
3.影響剎車距離的最主要因素是汽車行駛的速度及路面的摩擦系數(shù).有研究表明,晴天在某段公路上行駛上,速度為V(km/h)的汽車的剎車距離S(m)可由公式S=V2確定;雨天行駛時(shí),這一公式為S=V2.如果車行駛的速度是
4.(2006年南京市)如圖,在矩形ABCD中,AB=2AD,線段EF=10.在EF上取一點(diǎn)M,分別以EM、MF為一邊作矩形EMNH、矩形MFGN,使矩形MFGN~矩形ABCD.令MN=x,當(dāng)x為何值時(shí),矩形EMNH的面積S有最大值?最大值是多少?
5.(2006年青島市)在2006年青島嶗山北宅櫻桃節(jié)前夕,某果品批發(fā)公司為指導(dǎo)今年的櫻桃銷售,對(duì)往年的市場(chǎng)銷售情況進(jìn)行了調(diào)查統(tǒng)計(jì),得到如下數(shù)據(jù):
銷售價(jià)x(元/千克)
…
25
24
23
22
…
銷售量y(千克)
…
2000
2500
3000
3500
…
(1)在如圖的直角坐標(biāo)系內(nèi),作出各組有序數(shù)對(duì)(x,y)所對(duì)應(yīng)的點(diǎn).連接各點(diǎn)并觀察所得的圖形,判斷y與x之間的函數(shù)關(guān)系,并求出y與x之間的函數(shù)關(guān)系式;
(2)若櫻桃進(jìn)價(jià)為13元/千克,試求銷售利潤(rùn)P(元)與銷售價(jià)x(元/千克)之間的函數(shù)關(guān)系式,并求出當(dāng)x取何值時(shí),P的值最大?
6.(2006十堰市)市“健益”超市購(gòu)進(jìn)一批20元/千克的綠色食品,如果以30元/千克銷售,那么每天可售出400千克.由銷售經(jīng)驗(yàn)知,每天銷售量y(千克)與銷售單價(jià)x(元)(x≥30)存在如下圖所示的一次函數(shù)關(guān)系式.
(1)試求出y與x的函數(shù)關(guān)系式;
(2)設(shè)“健益”超市銷售該綠色食品每天獲得利潤(rùn)P元,當(dāng)銷售單價(jià)為何值時(shí),每天可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)根據(jù)市場(chǎng)調(diào)查,該綠色食品每天可獲利潤(rùn)不超過(guò)4480元,現(xiàn)該超市經(jīng)理要求每天利潤(rùn)不得低于4180元,請(qǐng)你幫助該超市確定綠色食品銷售單價(jià)x的范圍(直接寫出答案).
7.施工隊(duì)要修建一個(gè)橫斷面為拋物線的公路隧道,其高度為
(1)直接寫出點(diǎn)M及拋物線頂點(diǎn)P的坐標(biāo);
(2)求出這條拋物線的函數(shù)解析式;
(3)施工隊(duì)計(jì)劃在隧道門口搭建一個(gè)矩形“腳手架”ABCD,使A、D點(diǎn)在拋物線上,B、C點(diǎn)在地面OM上.為了籌備材料,需求出“腳手架”三根木桿AB、AD、DC的長(zhǎng)度之和的最大值是多少?請(qǐng)你幫施工隊(duì)計(jì)算一下.
8.(2006年泉州市)一條隧道的截面如圖所示,它的上部是一個(gè)以AD為直徑的半圓O,下部是一個(gè)矩形ABCD.
(1)當(dāng)AD=
(2)已知矩形ABCD相鄰兩邊之和為
①求隧道截面的面積S(米)關(guān)于半徑r(米)的函數(shù)關(guān)系式(不要求寫出r的取值范圍);
②若
答案:
例題經(jīng)典
例1:解:設(shè)矩形PNDM的邊DN=x,NP=y,則矩形PNDM的面積S=xy(2≤x≤4)
易知CN=4-x,EM=4-y.且有(作輔助線構(gòu)造相似三角形),即=,∴y=-x+5,S=xy=-x2+5x(2≤x≤4),
此二次函數(shù)的圖象開(kāi)口向下,對(duì)稱軸為x=5,
∴當(dāng)x≤5時(shí),函數(shù)的值是隨x的增大而增大,
對(duì)2≤x≤4來(lái)說(shuō),當(dāng)x=4時(shí),S有最大值S最大=-×42+5×4=12.
考點(diǎn)精練
1.-1,小,- 2.7 3.36
4.解:∵矩形MFGN∽矩形ABCD,∴,
∵AB=2AD,MN=x,∴MF=2x,∴EM=EF-MF=10-2x,
∴S=x(10-2x)=-2x2+10x=-2(x-)2+,
∴當(dāng)x=時(shí),S有最大值為.
5.解:(1)正確描點(diǎn)、連線.由圖象可知,y是x的一次函數(shù),設(shè)y=kx+b,
∵點(diǎn)(25,2000),(24,2500)在圖象上,
∴ ,
∴y=-500x+14500.
(2)P=(x-13)?y=(x-13)?(-500x+14500)
=-500x2+21000x-188500=-500(x-21)2+32000,
∴P與x的函數(shù)關(guān)系式為P=-500x2+21000x-188500,
當(dāng)銷售價(jià)為21元/千克時(shí),能獲得最大利潤(rùn).
6.解:(1)設(shè)y=kx+b由圖象可知,,
∴y=-20x+1000(30≤x≤50)
(2)P=(x-20)y=(x-20)(-20x+1000)=-20x2+1400x-20000.
∵a=-20<0,∴P有最大值.
當(dāng)x=-=35時(shí),P最大值=4500.
即當(dāng)銷售單價(jià)為35元/千克時(shí),每天可獲得最大利潤(rùn)4500元.
(3)31≤x≤34或36≤x≤39.
7.解:(1)M(12,0),P(6,6).
(2)設(shè)這條拋物線的函數(shù)解析式為:y=a(x-6)2+6,
∵拋物線過(guò)O(0,0),∴a(0-6)2+6=0,解得a=,
∴這條拋物線的函數(shù)解析式為y=-(x-6)2+6,即y=-x2+2x.
(3)設(shè)點(diǎn)A的坐標(biāo)為(m,-m2+
∴OB=m,AB=DC=-m2+
∴BC=12
∴L=AB+AD+DC=-m2+
∴當(dāng)m=3,即OB=
8.(1)當(dāng)AD=
(2)①∵AD=2r,AD+CD=8,∴CD=8-AD=8-2r,
∴S=r2+AD?CD=r2+2r(8-2r)=(-4)r2+16r,
②由①知CD=8-2r,又∵
由①知S=(-4)r2+16r=(×3.14-4)r2+16r
=-2.43r2+16r=-2.43(r-)2+,
∵-2.43<0,∴函數(shù)圖象為開(kāi)口向下的拋物線,
∵函數(shù)圖象對(duì)稱軸r=≈3.3.又2.5≤r≤3<3.3,
由函數(shù)圖象知,在對(duì)稱軸左側(cè)S隨r的增大而增大,
故當(dāng)r=3時(shí),S有最大值,
S最大值=(-4)×32+16×3≈(×3.14-4)×9+48=26.13≈26.1(米2).
答:隧道截面面積S的最大值約為
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com