2009年高考數(shù)學(xué)難點(diǎn)突破專題輔導(dǎo)二十八
難點(diǎn)28 求空間距離
空間中距離的求法是歷年高考考查的重點(diǎn),其中以點(diǎn)與點(diǎn)、點(diǎn)到線、點(diǎn)到面的距離為基礎(chǔ),求其他幾種距離一般化歸為這三種距離.
●難點(diǎn)磁場(chǎng)
(★★★★)如圖,已知ABCD是矩形,AB=a,AD=b,PA⊥平面ABCD,PA=2c,Q是PA的中點(diǎn).
求:(1)Q到BD的距離;
(2)P到平面BQD的距離.
●案例探究
[例1]把正方形ABCD沿對(duì)角線AC折起成直二面角,點(diǎn)E、F分別是AD、BC的中點(diǎn),點(diǎn)O是原正方形的中心,求:
(1)EF的長(zhǎng);
(2)折起后∠EOF的大小.
命題意圖:考查利用空間向量的坐標(biāo)運(yùn)算來解決立體幾何問題,屬★★★★級(jí)題目.
知識(shí)依托:空間向量的坐標(biāo)運(yùn)算及數(shù)量積公式.
錯(cuò)解分析:建立正確的空間直角坐標(biāo)系.其中必須保證x軸、y軸、z軸兩兩互相垂直.
技巧與方法:建系方式有多種,其中以O點(diǎn)為原點(diǎn),以、、的方向分別為x軸、y軸、z軸的正方向最為簡(jiǎn)單.
解:如圖,以O點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系O―xyz,設(shè)正方形ABCD邊長(zhǎng)為a,則A(0,-a,0),B(a,0,0),C(0, a,0),D(0,0, a),E(0,-a, a),F(a, a,0)
∴∠EOF=120°
[例2]正方體ABCD―A1B1C1D1的棱長(zhǎng)為1,求異面直線A1C1與AB1間的距離.
命題意圖:本題主要考查異面直線間距離的求法,屬★★★★級(jí)題目.
知識(shí)依托:求異面直線的距離,可求兩異面直線的公垂線,或轉(zhuǎn)化為求線面距離,或面面距離,亦可由最值法求得.
錯(cuò)解分析:本題容易錯(cuò)誤認(rèn)為O1B是A1C與AB1的距離,這主要是對(duì)異面直線定義不熟悉,異面直線的距離是與兩條異面直線垂直相交的直線上垂足間的距離.
技巧與方法:求異面直線的距離,有時(shí)較難作出它們的公垂線,故通常采用化歸思想,轉(zhuǎn)化為求線面距、面面距、或由最值法求得.
解法一:如圖,連結(jié)AC1,在正方體AC1中,∵A1C1∥AC,∴A1C1∥平面AB1C,∴A1C1與平面AB1C間的距離等于異面直線A1C1與AB1間的距離.
連結(jié)B1D1、BD,設(shè)B1D1∩A1C1=O1,BD∩AC=O
∵AC⊥BD,AC⊥DD1,∴AC⊥平面BB1D1D
∴平面AB1C⊥平面BB1D1D,連結(jié)B1O,則平面AB1C∩平面BB1D1D=B1O
作O1G⊥B1O于G,則O1G⊥平面AB1C
∴O1G為直線A1C1與平面AB1C間的距離,即為異面直線A1C1與AB1間的距離.
在Rt△OO1B1中,∵O1B1=,OO1=1,∴OB1==
解法二:如圖,在A1C上任取一點(diǎn)M,作MN⊥AB1于N,作MR⊥A1B1于R,連結(jié)RN,
∵平面A1B1C1D1⊥平面A1ABB1,∴MR⊥平面A1ABB1,MR⊥AB1
∵AB1⊥RN,設(shè)A1R=x,則RB1=1-x
∵∠C1A1B1=∠AB1A1=45°,
∴當(dāng)x=時(shí),MN有最小值即異面直線A1C1與AB1距離為.
●錦囊妙記
空間中的距離主要指以下七種:
(1)兩點(diǎn)之間的距離.
(2)點(diǎn)到直線的距離.
(3)點(diǎn)到平面的距離.
(4)兩條平行線間的距離.
(5)兩條異面直線間的距離.
(6)平面的平行直線與平面之間的距離.
(7)兩個(gè)平行平面之間的距離.
七種距離都是指它們所在的兩個(gè)點(diǎn)集之間所含兩點(diǎn)的距離中最小的距離.七種距離之間有密切聯(lián)系,有些可以相互轉(zhuǎn)化,如兩條平行線的距離可轉(zhuǎn)化為求點(diǎn)到直線的距離,平行線面間的距離或平行平面間的距離都可轉(zhuǎn)化成點(diǎn)到平面的距離.
在七種距離中,求點(diǎn)到平面的距離是重點(diǎn),求兩條異面直線間的距離是難點(diǎn).
求點(diǎn)到平面的距離:(1)直接法,即直接由點(diǎn)作垂線,求垂線段的長(zhǎng).(2)轉(zhuǎn)移法,轉(zhuǎn)化成求另一點(diǎn)到該平面的距離.(3)體積法.
求異面直線的距離:(1)定義法,即求公垂線段的長(zhǎng).(2)轉(zhuǎn)化成求直線與平面的距離.(3)函數(shù)極值法,依據(jù)是兩條異面直線的距離是分別在兩條異面直線上兩點(diǎn)間距離中最小的.
●殲滅難點(diǎn)訓(xùn)練
一、選擇題
1.(★★★★★)正方形ABCD邊長(zhǎng)為2,E、F分別是AB和CD的中點(diǎn),將正方形沿EF折成直二面角(如圖),M為矩形AEFD內(nèi)一點(diǎn),如果∠MBE=∠MBC,MB和平面BCF所成角的正切值為,那么點(diǎn)M到直線EF的距離為( )
2.(★★★★)三棱柱ABC―A1B1C1中,AA1=1,AB=4,BC=3,∠ABC=90°,設(shè)平面A1BC1與平面ABC的交線為l,則A1C1與l的距離為( )
二、填空題
3.(★★★★)如左下圖,空間四點(diǎn)A、B、C、D中,每?jī)牲c(diǎn)所連線段的長(zhǎng)都等于a,動(dòng)點(diǎn)P在線段AB上,動(dòng)點(diǎn)Q在線段CD上,則P與Q的最短距離為_________.
4.(★★★★)如右上圖,ABCD與ABEF均是正方形,如果二面角E―AB―C的度數(shù)為
30°,那么EF與平面ABCD的距離為_________.
三、解答題
5.(★★★★★)在長(zhǎng)方體ABCD―A1B1C1D1中,AB=4,BC=3,CC1=2,如圖:
6.(★★★★★)已知正四棱柱ABCD―A1B1C1D1,點(diǎn)E在棱D1D上,截面EAC∥D1B且面EAC與底面ABCD所成的角為45°,AB=a,求:
(1)截面EAC的面積;
(2)異面直線A1B1與AC之間的距離;
(3)三棱錐B1―EAC的體積.
7.(★★★★)如圖,已知三棱柱A1B1C1―ABC的底面是邊長(zhǎng)為2的正三角形,側(cè)棱A1A與AB、AC均成45°角,且A1E⊥B1B于E,A1F⊥CC1于F.
難點(diǎn)磁場(chǎng)
解:(1)在矩形ABCD中,作AE⊥BD,E為垂足
連結(jié)QE,∵QA⊥平面ABCD,由三垂線定理得QE⊥BE
∴QE的長(zhǎng)為Q到BD的距離
在矩形ABCD中,AB=a,AD=b,
(2)解法一:∵平面BQD經(jīng)過線段PA的中點(diǎn),
∴P到平面BQD的距離等于A到平面BQD的距離
在△AQE中,作AH⊥QE,H為垂足
∵BD⊥AE,BD⊥QE,∴BD⊥平面AQE ∴BD⊥AH
∴AH⊥平面BQE,即AH為A到平面BQD的距離.
解法二:設(shè)點(diǎn)A到平面QBD的距離為h,由
VA―BQD=VQ―ABD,得S△BQD?h=S△ABD?AQ
殲滅難點(diǎn)訓(xùn)練
一、1.解析:過點(diǎn)M作MM′⊥EF,則MM′⊥平面BCF
∵∠MBE=∠MBC
∴BM′為∠EBC為角平分線,
答案:A
2.解析:交線l過B與AC平行,作CD⊥l于D,連C1D,則C1D為A1C1與l的距離,而CD等于AC上的高,即CD=,Rt△C1CD中易求得C1D==2.6
答案:C
二、3.解析:以A、B、C、D為頂點(diǎn)的四邊形為空間四邊形,且為正四面體,取P、Q分別為AB、CD的中點(diǎn),因?yàn)?i>AQ=BQ=a,∴PQ⊥AB,同理可得PQ⊥CD,故線段PQ的
長(zhǎng)為P、Q兩點(diǎn)間的最短距離,在Rt△APQ中,PQ=a
4.解析:顯然∠FAD是二面角E―AB―C的平面角,∠FAD=30°,過F作FG⊥平面ABCD于G,則G必在AD上,由EF∥平面ABCD.
三、5.(1)證明:由于BC1∥AD1,則BC1∥平面ACD1
同理,A1B∥平面ACD1,則平面A1BC1∥平面ACD1
(2)解:設(shè)兩平行平面A1BC1與ACD1間的距離為d,則d等于D1到平面A1BC1的距離.易求A1C1=5,A1B=2,BC1=,則cosA1BC1=,則sinA1BC1=,則S=,由于,則S?d=?BB1,代入求得d=,即兩平行平面間的距離為.
(3)解:由于線段B1D1被平面A1BC1所平分,則B1、D1到平面A1BC1的距離相等,則由(2)知點(diǎn)B1到平面A1BC1的距離等于.
6.解:(1)連結(jié)DB交AC于O,連結(jié)EO,
∵底面ABCD是正方形
∴DO⊥AC,又ED⊥面ABCD
∴EO⊥AC,即∠EOD=45°
(2)∵A1A⊥底面ABCD,∴A1A⊥AC,又A1A⊥A1B1
∴A1A是異面直線A1B1與AC間的公垂線
又EO∥BD1,O為BD中點(diǎn),∴D1B=2EO=2a
(3)連結(jié)B1D交D1B于P,交EO于Q,推證出B1D⊥面EAC
7.解:(1)∵BB1⊥A1E,CC1⊥A1F,BB1∥CC1
∴BB1⊥平面A1EF
即面A1EF⊥面BB1C1C
在Rt△A1EB1中,
∵∠A1B1E=45°,A1B1=a
∴△EA1F為等腰直角三角形,∠EA1F=90°
過A1作A1N⊥EF,則N為EF中點(diǎn),且A1N⊥平面BCC1B1
即A1N為點(diǎn)A1到平面BCC1B1的距離
∴a=2,∴所求距離為2
(2)設(shè)BC、B1C1的中點(diǎn)分別為D、D1,連結(jié)AD、DD1和A1D1,則DD1必過點(diǎn)N,易證ADD1A1為平行四邊形.
∵B1C1⊥D1D,B1C1⊥A1N
∴B1C1⊥平面ADD1A1
∴BC⊥平面ADD1A1
得平面ABC⊥平面ADD1A1,過A1作A1M⊥平面ABC,交AD于M,
若A1M=A1N,又∠A1AM=∠A1D1N,∠AMA1=∠A1ND1=90°
∴△AMA1≌△A1ND1,∴AA1=A1D1=,即當(dāng)AA1=時(shí)滿足條件.
從而AD與PC間的距離就是直線AD與平面PBC間的距離.
過A作AE⊥PB,又AE⊥BC
∴AE⊥平面PBC,AE為所求.
在等腰直角三角形PAB中,PA=AB=a
下面在AD上找一點(diǎn)F,使PC⊥CF
取MD中點(diǎn)F,△ACM、△FCM均為等腰直角三角形
∴∠ACM+∠FCM=45°+45°=90°
∴FC⊥AC,即FC⊥PC∴在AD上存在滿足條件的點(diǎn)F.
[學(xué)法指導(dǎo)]立體幾何中的策略思想及方法
立體幾何中的策略思想及方法
近年來,高考對(duì)立體幾何的考查仍然注重于空間觀點(diǎn)的建立和空間想象能力的培養(yǎng).題目起點(diǎn)低,步步升高,給不同層次的學(xué)生有發(fā)揮能力的余地.大題綜合性強(qiáng),有幾何組合體中深層次考查空間的線面關(guān)系.因此,高考復(fù)習(xí)應(yīng)在抓好基本概念、定理、表述語(yǔ)言的基礎(chǔ)上,以總結(jié)空間線面關(guān)系在幾何體中的確定方法入手,突出數(shù)學(xué)思想方法在解題中的指導(dǎo)作用,并積極探尋解答各類立體幾何問題的有效的策略思想及方法.
一、領(lǐng)悟解題的基本策略思想
高考改革穩(wěn)中有變.運(yùn)用基本數(shù)學(xué)思想如轉(zhuǎn)化,類比,函數(shù)觀點(diǎn)仍是考查中心,選擇好典型例題,在基本數(shù)學(xué)思想指導(dǎo)下,歸納一套合乎一般思維規(guī)律的解題模式是受學(xué)生歡迎的,學(xué)生通過熟練運(yùn)用,逐步內(nèi)化為自己的經(jīng)驗(yàn),解決一般基本數(shù)學(xué)問題就會(huì)自然流暢.
二、探尋立體幾何圖形中的基面
立體幾何圖形必須借助面的襯托,點(diǎn)、線、面的位置關(guān)系才能顯露地“立”起來.在具體的問題中,證明和計(jì)算經(jīng)常依附于某種特殊的輔助平面即基面.這個(gè)輔助平面的獲取正是解題的關(guān)鍵所在,通過對(duì)這個(gè)平面的截得,延展或構(gòu)造,綱舉目張,問題就迎刃而解了.
三、重視模型在解題中的應(yīng)用
學(xué)生學(xué)習(xí)立體幾何是從認(rèn)識(shí)具體幾何模型到抽象出空間點(diǎn)、線、面的關(guān)系,從而培養(yǎng)空間想象能力.而數(shù)學(xué)問題中許多圖形和數(shù)量關(guān)系都與我們熟悉模型存在著某種聯(lián)系.它引導(dǎo)我們以模型為依據(jù),找出起關(guān)鍵作用的一些關(guān)系或數(shù)量,對(duì)比數(shù)學(xué)問題中題設(shè)條件,突出特性,設(shè)法對(duì)原圖形補(bǔ)形,拼湊、構(gòu)造、嵌入、轉(zhuǎn)化為熟知的、形象的、直觀的模型,利用其特征規(guī)律獲取優(yōu)解.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com