專題14 直線 圓錐曲線 平面向量
一 能力培養(yǎng)
1,函數(shù)與方程思想 2,數(shù)形結(jié)合思想 3,分類討論思想 4,轉(zhuǎn)化能力 5,運算能力
二 問題探討
問題1設坐標原點為O,拋物線與過焦點的直線交于A,B兩點,求的值.
問題2已知直線L與橢圓交于P,Q不同兩點,記OP,OQ的斜率分別為
,,如果,求PQ連線的中點M的軌跡方程.
問題3給定拋物線C:,F是C的焦點,過點F的直線與C相交于A,B兩點.
(I)設的斜率為1,求與夾角的大小;
(II)設,若,求在軸上截距的變化范圍.
問題4求同時滿足下列三個條件的曲線C的方程:
①是橢圓或雙曲線; ②原點O和直線分別為焦點及相應準線;
③被直線垂直平分的弦AB的長為.
三 習題探
選擇題
1已知橢圓的離心率,則實數(shù)的值為
A,3 B,3或 C, D,或
2一動圓與兩圓和都外切,則動圓圓心的軌跡為
A,圓 B,橢圓 C,雙曲線的一支 D,拋物線
3已知雙曲線的頂點為與(2,5),它的一條漸近線與直線平行,則雙曲
線的準線方程是
A, B, C, D,
4拋物線上的點P到直線有最短的距離,則P的坐標是
A,(0,0) B, C, D,
5已知點F,直線:,點B是上的動點.若過B垂直于軸的直線與線段
BF的垂直平分線交于點M,則點M的軌跡是
A,雙曲線 B,橢圓 C,圓 D,拋物線
填空題
6橢圓上的一點到左焦點的最大距離為8,到右準線的最小距離
為,則此橢圓的方程為 .
7與方程的圖形關于對稱的圖形的方程是 .
8設P是拋物線上的動點,點A的坐標為,點M在直線PA上,
且分所成的比為2:1,則點M的軌跡方程是 .
9設橢圓與雙曲線有共同的焦點,且橢圓長軸是雙曲線實軸的2倍,
則橢圓與雙曲線的交點軌跡是 .
解答題
10已知點H,點P在軸上,點Q在軸的正半軸上,點M在直線PQ上,
且滿足,.
(I)當點P在軸上移動時,求點M的軌跡C;
(II)過點T作直線與軌跡C交于A,B兩點,若在軸上存在一點E,
使得是等邊三角形,求的值.
11已知雙曲線C:,點B,F分別是雙曲線C的右頂點和右焦點,
O為坐標原點.點A在軸正半軸上,且滿足成等比數(shù)列,過點F作雙曲
線C在第一,第三象限的漸近線的垂線,垂足為P.
(I)求證:; (II)設,直線與雙曲線C的左,右兩分
支分別相交于點D,E,求的值.
12已知雙曲線的兩個焦點分別為,,其中又是拋物線的焦點,點A,
B在雙曲線上.
(I)求點的軌跡方程; (II)是否存在直線與點的軌跡有且只
有兩個公共點?若存在,求實數(shù)的值,若不存在,請說明理由.
問題1解:(1)當直線AB軸時,在中,令,有,則
,得.
(2)當直線AB與軸不互相垂直時,設AB的方程為:
由,消去,整理得,顯然.
設,則,得
=+=+
=
==.
綜(1),(2)所述,有.
問題2解:設點P,Q,M的坐標分別為,
|