學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

1.C   2.D    3.D   4.C   5.D   6.C    7.A   8.A   9.B   10.A學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

11.   12.   13.①②③   14.16   15.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

16.解:學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

 ⑴ .學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

⑵ 函數(shù)上單調(diào)遞增,在上單調(diào)遞減.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

所以,當(dāng)時(shí),;當(dāng)時(shí),.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

的值域?yàn)?sub>.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

17.解:⑴若,則,的圖象與軸的交點(diǎn)為,滿足題意.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

   若,則依題意得:,即.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

   故. 學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

    ⑵顯然.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

,則由可知,方程有一正一負(fù)兩根,此時(shí)滿足題意.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

,則學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

時(shí),,不滿足題意.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

時(shí),方程有兩負(fù)根,也不滿足題意.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

18.解:由題意可知圓的方程為,于是.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

設(shè),則由得,.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

所以的中點(diǎn)坐標(biāo)為.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

又由,且,可知直線與直線垂直,即直線的斜率為.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

故直線的方程為,即.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

19.解:⑴年后新城區(qū)的住房總面積為學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

         .學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

設(shè)每年舊城區(qū)拆除的數(shù)量是,則學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

解得,即每年舊城區(qū)拆除的住房面積是.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

⑵設(shè)第年新城區(qū)的住房建設(shè)面積為,則    所以學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

當(dāng)時(shí),;學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

當(dāng)時(shí),學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

     故學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

20.證明:⑴由函數(shù)的圖象關(guān)于直線對(duì)稱,學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

,即有.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

又函數(shù)是定義在R上的奇函數(shù),有. 故.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

從而. 即是周期為的周期函數(shù).學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

⑵由函數(shù)是定義在R上的奇函數(shù),有.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

時(shí),. 故時(shí),.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

時(shí),,.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

從而,時(shí),函數(shù)的解析式為.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

21.解:⑴方法一  設(shè)動(dòng)點(diǎn)的坐標(biāo)為,則,.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

,得  ,學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

化簡(jiǎn)得(當(dāng)時(shí)也滿足).學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

顯然,動(dòng)點(diǎn)在線段的中垂線的左側(cè),且,學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

故軌跡的方程為 .學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

     方法二  作的平分線交,則有,且 , 學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

,得.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

      設(shè)動(dòng)點(diǎn)的坐標(biāo)為,則,即有,且.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

,故軌跡的方程為.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)⑵ 設(shè),學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

的中點(diǎn).學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

由點(diǎn)差法有 ,即.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

;所以,.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

①由得,.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

②直線的方程為,即.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

上式代入得,,學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

所以,,.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

四點(diǎn)共圓,則,由到角公式可得 學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

,即 ;解得.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

故可能有四點(diǎn)共圓,此時(shí).學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

 


同步練習(xí)冊(cè)答案