2009屆江西省高三數(shù)學模擬試題分類匯編立體幾何

一 選擇題

1. (江西贛州市十縣(市)重點中學09年上學期聯(lián)考)

平面平面的一個充分條件是                      ( 。

       A.存在一條直線

       B.存在一條直線

       C.存在兩條平行直線

       D.存在兩條異面直線

答案:D

2.(江西省五校09屆第二次月考)

有一正方體,六個面上分別寫有數(shù)字1、2、3、4、5、6,有三個人從不同的角度觀察的結果如圖所示.如果記3的對面的數(shù)字為m,4的對面的數(shù)字為n,那么m+n的值為(    )

       A.3      B.7       C.8      D.11

    <source id="umgis"></source>
    • <noscript id="umgis"></noscript>
      <option id="umgis"></option>
        <source id="umgis"></source>

           

           

           

           

           

           

          答案:C

          3.(江西贛州市十縣(市)重點中學2008―2009學年度上學期聯(lián)考)

          三棱錐中, , △是斜邊

          的等腰直角三角形, 則以下結論中: ① 異面直線與    

          所成的角為; ② 直線平面; ③ 面面       

          ; ④ 點到平面的距離是. 其中正確結論的序號是

           _______________ .

          答案:①.②.③.④

           

           

          二 填空題

          1.(江西贛州市十縣(市)重點中學09年上學期聯(lián)考)

          三棱錐中, , △是斜邊的等腰直角三角形, 則以下結論中: ① 異面直線*所成的角為; ② 直線平面; ③ 面*; ④ 點到平面的距離是. 其中正確結論的序號是_______________ .

          答案: ①.②.③.④

          2.(江西省五校09屆第二次月考)

          給出下列五個命題:

                 ①有兩個對角面是全等的矩形的四棱柱是長方體.

                 ②函數(shù)y=sinx在第一象限內(nèi)是增函數(shù).

                 ③f(x)是單調(diào)函數(shù),則f(x)與f-1(x)具有相同的單調(diào)性.

                 ④一個二面角的兩個平面分別垂直于另一個二面的兩個平面,則這兩個二面角的平面角

          相等或互為補角.

                 ⑤當橢圓的離心率e越接近于0時,這個橢圓的形狀就越接近于圓.

          其中正確命題的序號為                       .

          答案: ③  ⑤

          3.(江西琴海學校09屆高三第三次月考)

          半徑為的球面上有A、B、C三點,AB=6,BC=8,AC=10,則球心到平面ABC的距離為          .

          答案:  5

           

          三 解答題

          1. (江西贛州一中) 如圖,平面平面,四邊形都是直角梯形,,

          (Ⅰ)證明:四點共面;

          (Ⅱ)設,求二面角的大小.

           

           

           

           

          【解】:(Ⅰ)延長的延長線于點,由

                   

          延長的延長線于同理可得

          ,即重合

          因此直線相交于點,即四點共面。

          (Ⅱ)設,則,

          中點,則,

          又由已知得,平面

          ,與平面內(nèi)兩相交直線都垂直。

          所以平面,作,垂足為,連結

          由三垂線定理知為二面角的平面角。

             

            故

          所以二面角的大小

          2.(江西省五校09屆第二次月考)

          如圖正三棱柱中,底面邊長為,側棱長為,若經(jīng)過對角線且與對角線平行的平面交上底面于

             (1)試確定點的位置,并證明你的結論;

             (2)求二面角的大小;

           

           

           

           

          解:(1)的中點.連結交于,

          的中點,為平面與平面的交線,

          //平面

          //,∴的中點。

          (2)過,由正三棱柱的性質(zhì),平面,連結,在正中,的中點,又在直角三角形中,所以可得

          .則為二面角的大小,可求得,

          ,∴.即所求.

          (2)解法(二)(空間向量法)

          建立如圖所示空間直角坐標系,則

          ,

          是平面的一個法向量,則可得

          ,所以.所以可得

          又平面的一個法向量

          又可知二面角是銳角,所以二面角 的大小是

           

           

           

           

          3.(江西琴海學校09屆高三第三次月考)

          如圖:正三棱柱ABC―A1B1C1中,D是BC的中點,AA1=AB=1.

          (1)求證:A1C//平面AB1D;

          (2)求二面角B―AB1―D的大小;

          (3)求點C到平面AB1D的距離.

           

           

           

          (1)連接A1B,設A1B∩AB1=E,連結DE,

          ∵ABC―A1B1C是正三棱柱且AA1=AB,

          ∴四邊形A1ABB1是正方形,∴E是A1B的中點,

          又D是BC的中點,∴DE//A1C ……………………3分

          DE平面AB1D,A1C平面AB1D,∴A1C//平面AB1D  ……………………4分

          (2)在平面ABC內(nèi)作DF⊥AB于點F,在平面A1ABB1內(nèi)作FG⊥AB1于點G,連結DG。

          ∵平面A1ABB1⊥平面ABC,

          ∴DF⊥平面A1ABB1,F(xiàn)G是DG在平面A1ABB1上的射影,

          ∵FG⊥AB1, ∴DG⊥AB1, ∴∠FGD是二面角B―AB1―D的平面角 ……6分

          ∵A1A=AB=1,在正△ABC中,,在△ABE中,F(xiàn)G=

          在Rt△DFG中,,

          ∴二面角B―AB1―D的大小為  ……………………8分

          (3)∵平面B­1BC1⊥平面ABC且AD⊥BC,∴AD⊥平面B1BCC1,

          又AD平面AB1D,∴平面B1BCC1⊥平面AB1D,

          在平面B1BCC1內(nèi)作CH⊥B1D交B1D的延長線于點H,則

          CH的長度就是點C到平面ABCD的距離

          由△CDH∽△B1DB得:,

          即點C到平面AB1D的距離是   ……………………………………12分

           

           


          同步練習冊答案