第四講  導(dǎo)數(shù)及其應(yīng)用(2)

★★★高考在考什么

【考題回放】

1.已知對(duì)任意實(shí)數(shù)6ec8aac122bd4f6e,有6ec8aac122bd4f6e,且6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e,則6ec8aac122bd4f6e時(shí)(  B  )

A.6ec8aac122bd4f6e          B.6ec8aac122bd4f6e

C.6ec8aac122bd4f6e          D.6ec8aac122bd4f6e

2.曲線(xiàn)6ec8aac122bd4f6e在點(diǎn)6ec8aac122bd4f6e處的切線(xiàn)與坐標(biāo)軸所圍三角形的面積為(  D  )

A.6ec8aac122bd4f6e        B.6ec8aac122bd4f6e    C.6ec8aac122bd4f6e    D.6ec8aac122bd4f6e

3.設(shè)6ec8aac122bd4f6e6ec8aac122bd4f6e內(nèi)單調(diào)遞增,6ec8aac122bd4f6e,則6ec8aac122bd4f6e6ec8aac122bd4f6e的( B。

A.充分不必要條件              B.必要不充分條件

C.充分必要條件                D.既不充分也不必要條件

4.設(shè)6ec8aac122bd4f6e是函數(shù)6ec8aac122bd4f6e的導(dǎo)函數(shù),將6ec8aac122bd4f6e6ec8aac122bd4f6e的圖象畫(huà)在同一個(gè)直角坐標(biāo)系中,不可能正確的是(  D  )

6ec8aac122bd4f6e

5.函數(shù)6ec8aac122bd4f6e的單調(diào)遞增區(qū)間是____.6ec8aac122bd4f6e

6.若直線(xiàn)y=x是曲線(xiàn)y=x3-3x2+ax的切線(xiàn),則a=           

 

★★★高考要考什么

1.  導(dǎo)數(shù)的定義:6ec8aac122bd4f6e

2.  導(dǎo)數(shù)的幾何意義:

(1)       函數(shù)6ec8aac122bd4f6e在點(diǎn)6ec8aac122bd4f6e處的導(dǎo)數(shù)6ec8aac122bd4f6e,就是曲線(xiàn)6ec8aac122bd4f6e在點(diǎn)6ec8aac122bd4f6e處的切線(xiàn)的斜率;

(2)函數(shù)6ec8aac122bd4f6e在點(diǎn)6ec8aac122bd4f6e處的導(dǎo)數(shù)6ec8aac122bd4f6e,就是物體的運(yùn)動(dòng)方程6ec8aac122bd4f6e在時(shí)刻6ec8aac122bd4f6e時(shí)的瞬時(shí)速度;

3.要熟記求導(dǎo)公式、導(dǎo)數(shù)的運(yùn)算法則、復(fù)合函數(shù)的導(dǎo)數(shù)等。尤其注意:6ec8aac122bd4f6e6ec8aac122bd4f6e。

4.求函數(shù)單調(diào)區(qū)間的步驟:1)、確定f(x)的定義域,2)、求導(dǎo)數(shù)y′,3)、令y′>0(y′<0),解出相應(yīng)的x的范圍。當(dāng)y′>0時(shí),f(x)在相應(yīng)區(qū)間上是增函數(shù);當(dāng)y′<0時(shí),f(x)在相應(yīng)區(qū)間上是減函數(shù)

5.求極值常按如下步驟:① 確定函數(shù)的定義域;② 求導(dǎo)數(shù);③ 求方程6ec8aac122bd4f6e=0的根及導(dǎo)數(shù)不存在的點(diǎn),這些根或點(diǎn)也稱(chēng)為可能極值點(diǎn);④通過(guò)列表法, 檢查在可能極值點(diǎn)的左右兩側(cè)的符號(hào),確定極值點(diǎn)。

6.設(shè)函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),求f(x)在[a,b]上的最大(。┲档牟襟E如下:(1)求f(x)在(a,b)內(nèi)的極值,(2)將f(x)的各極值與f(a),f(b)比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值。

7.最值(或極值)點(diǎn)必在下列各種點(diǎn)之中:導(dǎo)數(shù)等于零的點(diǎn)、導(dǎo)數(shù)不存在的點(diǎn)、端點(diǎn)。

★★★ 突 破 重 難 點(diǎn)

【范例1】已知函數(shù)6ec8aac122bd4f6e6ec8aac122bd4f6e處取得極值.

  (1)討論6ec8aac122bd4f6e6ec8aac122bd4f6e是函數(shù)f(x)的極大值還是極小值;

(2)過(guò)點(diǎn)6ec8aac122bd4f6e作曲線(xiàn)y= f(x)的切線(xiàn),求此切線(xiàn)方程.

(1)解:6ec8aac122bd4f6e,依題意,6ec8aac122bd4f6e,即

  6ec8aac122bd4f6e

  解得6ec8aac122bd4f6e. ∴6ec8aac122bd4f6e.

  令6ec8aac122bd4f6e,得6ec8aac122bd4f6e.

6ec8aac122bd4f6e,則6ec8aac122bd4f6e,故

f(x)在6ec8aac122bd4f6e上是增函數(shù),

f(x)在6ec8aac122bd4f6e上是增函數(shù).

6ec8aac122bd4f6e,則6ec8aac122bd4f6e,故f(x)在6ec8aac122bd4f6e上是減函數(shù).

所以,6ec8aac122bd4f6e是極大值;6ec8aac122bd4f6e是極小值.

(2)解:曲線(xiàn)方程為6ec8aac122bd4f6e,點(diǎn)6ec8aac122bd4f6e不在曲線(xiàn)上.

設(shè)切點(diǎn)為6ec8aac122bd4f6e,則點(diǎn)M的坐標(biāo)滿(mǎn)足6ec8aac122bd4f6e.

6ec8aac122bd4f6e,故切線(xiàn)的方程為6ec8aac122bd4f6e

注意到點(diǎn)A(0,16)在切線(xiàn)上,有

6ec8aac122bd4f6e  化簡(jiǎn)得6ec8aac122bd4f6e,解得6ec8aac122bd4f6e.

所以,切點(diǎn)為6ec8aac122bd4f6e,切線(xiàn)方程為6ec8aac122bd4f6e.

【點(diǎn)晴】過(guò)已知點(diǎn)求切線(xiàn),當(dāng)點(diǎn)不在曲線(xiàn)上時(shí),求切點(diǎn)的坐標(biāo)成了解題的關(guān)鍵.

【范例2】(安徽理)設(shè)a≥0,f (x)=x-1-ln2 x2a ln xx>0).

(Ⅰ)令Fx)=xf'x),討論Fx)在(0.+∞)內(nèi)的單調(diào)性并求極值;

(Ⅱ)求證:當(dāng)x>1時(shí),恒有x>ln2x2a ln x+1.

解:(Ⅰ)根據(jù)求導(dǎo)法則有6ec8aac122bd4f6e,

6ec8aac122bd4f6e,

于是6ec8aac122bd4f6e

列表如下:

6ec8aac122bd4f6e

6ec8aac122bd4f6e

2

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

0

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

極小值6ec8aac122bd4f6e

6ec8aac122bd4f6e

故知6ec8aac122bd4f6e6ec8aac122bd4f6e內(nèi)是減函數(shù),在6ec8aac122bd4f6e內(nèi)是增函數(shù),所以,在6ec8aac122bd4f6e處取得極小值6ec8aac122bd4f6e

(Ⅱ)證明:由6ec8aac122bd4f6e知,6ec8aac122bd4f6e的極小值6ec8aac122bd4f6e

于是由上表知,對(duì)一切6ec8aac122bd4f6e,恒有6ec8aac122bd4f6e

從而當(dāng)6ec8aac122bd4f6e時(shí),恒有6ec8aac122bd4f6e,故6ec8aac122bd4f6e6ec8aac122bd4f6e內(nèi)單調(diào)增加.

所以當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e,即6ec8aac122bd4f6e

故當(dāng)6ec8aac122bd4f6e時(shí),恒有6ec8aac122bd4f6e

【點(diǎn)晴】本小題主要考查函數(shù)導(dǎo)數(shù)的概念與計(jì)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值和證明不等式的方法,考查綜合運(yùn)用有關(guān)知識(shí)解決問(wèn)題的能力.

【范例2】已知定義在正實(shí)數(shù)集上的函數(shù)6ec8aac122bd4f6e,6ec8aac122bd4f6e,其中6ec8aac122bd4f6e.設(shè)兩曲線(xiàn)6ec8aac122bd4f6e,6ec8aac122bd4f6e有公共點(diǎn),且在該點(diǎn)處的切線(xiàn)相同.(I)用6ec8aac122bd4f6e表示6ec8aac122bd4f6e,并求6ec8aac122bd4f6e的最大值;

(II)求證:6ec8aac122bd4f6e6ec8aac122bd4f6e).

解:(Ⅰ)設(shè)6ec8aac122bd4f6e6ec8aac122bd4f6e在公共點(diǎn)6ec8aac122bd4f6e處的切線(xiàn)相同.

6ec8aac122bd4f6e,6ec8aac122bd4f6e,由題意6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e得:6ec8aac122bd4f6e,或6ec8aac122bd4f6e(舍去).

即有6ec8aac122bd4f6e

6ec8aac122bd4f6e,則6ec8aac122bd4f6e.于是

當(dāng)6ec8aac122bd4f6e,即6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e

當(dāng)6ec8aac122bd4f6e,即6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e為增函數(shù),在6ec8aac122bd4f6e為減函數(shù),

于是6ec8aac122bd4f6e6ec8aac122bd4f6e的最大值為6ec8aac122bd4f6e

(Ⅱ)設(shè)6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e為減函數(shù),在6ec8aac122bd4f6e為增函數(shù),

于是函數(shù)6ec8aac122bd4f6e6ec8aac122bd4f6e上的最小值是6ec8aac122bd4f6e

故當(dāng)6ec8aac122bd4f6e時(shí),有6ec8aac122bd4f6e,即當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e

【點(diǎn)晴】本小題主要考查函數(shù)、不等式和導(dǎo)數(shù)的應(yīng)用等知識(shí),考查綜合運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題的能力.

變式:已知函數(shù)6ec8aac122bd4f6e.

   (1)求函數(shù)y= f(x)的反函數(shù)6ec8aac122bd4f6e的導(dǎo)數(shù)6ec8aac122bd4f6e

   (2)假設(shè)對(duì)任意6ec8aac122bd4f6e成立,求實(shí)數(shù)m的取值范圍.

解:(1)6ec8aac122bd4f6e6ec8aac122bd4f6e;

6ec8aac122bd4f6e

(2)6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e

令:6ec8aac122bd4f6e

6ec8aac122bd4f6e

所以6ec8aac122bd4f6e都是增函數(shù).因此當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e的最大值為6ec8aac122bd4f6e的最小值為6ec8aac122bd4f6e而不等式②成立當(dāng)且僅當(dāng)6ec8aac122bd4f6e6ec8aac122bd4f6e,于是得 6ec8aac122bd4f6e 

解法二:由6ec8aac122bd4f6e

6ec8aac122bd4f6e

設(shè)6ec8aac122bd4f6e

于是原不等式對(duì)于6ec8aac122bd4f6e恒成立等價(jià)于6ec8aac122bd4f6e ③…7分

6ec8aac122bd4f6e,注意到

6ec8aac122bd4f6e故有6ec8aac122bd4f6e,從而可6ec8aac122bd4f6e均在

6ec8aac122bd4f6e上單調(diào)遞增,因此不等式③成立當(dāng)且僅當(dāng)

6ec8aac122bd4f6e6ec8aac122bd4f6e

【點(diǎn)晴】求參數(shù)的取值范圍,凡涉及函數(shù)的單調(diào)性、最值問(wèn)題時(shí),用導(dǎo)數(shù)的知識(shí)解決較簡(jiǎn)單.

 

 

 


同步練習(xí)冊(cè)答案