導(dǎo)體棒切割磁感線問題分類解析
電磁感應(yīng)中,“導(dǎo)體棒”切割磁感線問題是高考常見命題。解此類型問題的一般思路是:先解決電學(xué)問題,再解決力學(xué)問題,即先由法拉第電磁感應(yīng)定律求感應(yīng)電動勢,然后根據(jù)歐姆定律求感應(yīng)電流,求出安培力,再往后就是按力學(xué)問題的處理方法,如進(jìn)行受力情況分析、運動情況分析及功能關(guān)系分析等。
導(dǎo)體棒切割磁感線的運動一般有以下幾種情況:勻速運動、在恒力作用下的運動、恒功率運動等,現(xiàn)分別舉例分析。
一、導(dǎo)體棒勻速運動
例1. 如圖1所示,在一磁感應(yīng)強度B=0.5T的勻強磁場中,垂直于磁場方向水平放置著兩根相距為h=
圖1
(1)電阻R中的電流強度大小和方向;
(2)使金屬棒做勻速運動的拉力;
(3)金屬棒ab兩端點間的電勢差;
(4)回路中的發(fā)熱功率。
解析:金屬棒向左勻速運動時,等效電路如圖2所示。在閉合回路中,金屬棒cd部分相當(dāng)于電源,內(nèi)阻rcd=hr,電動勢Ecd=Bhv。
圖2
(1)根據(jù)歐姆定律,R中的電流強度為
(2)使金屬棒勻速運動的外力與安培力是一對平衡力,方向向左,大小為F=F安=BIh=0.02N。
(3)金屬棒ab兩端的電勢差等于Uac、Ucd與Udb三者之和,由于Ucd=Ecd-Ircd,所以Uab=Eab-Ircd=BLv-Ircd=0.32V。
(4)回路中的熱功率P熱=I2(R+hr)=0.08W。
點評:①不要把ab兩端的電勢差與ab棒產(chǎn)生的感應(yīng)電動勢這兩個概念混為一談。
②金屬棒勻速運動時,拉力和安培力平衡,拉力做正功,安培力做負(fù)功,能量守恒,外力的機械功率和回路中的熱功率相等,即。
導(dǎo)體棒在恒定外力的作用下由靜止開始運動,速度增大,感應(yīng)電動勢不斷增大,安培力、加速度均與速度有關(guān),當(dāng)安培力等于恒力時加速度等于零,導(dǎo)體棒最終勻速運動。整個過程加速度是變量,不能應(yīng)用運動學(xué)公式。
二、導(dǎo)體棒在恒力作用下由靜止開始運動
例2. 如圖3所示,兩根足夠長的直金屬導(dǎo)軌MN、PQ平行放置在傾角為θ的絕緣斜面上,兩導(dǎo)軌間距為L。M、P兩點間接有阻值為R的電阻。一根質(zhì)量為m的均勻直金屬桿ab放在兩導(dǎo)軌上,并與導(dǎo)軌垂直,整套裝置處于磁感應(yīng)強度為B的勻強磁場中,磁場方向垂直斜面向下。導(dǎo)軌和金屬桿的電阻可忽略。讓ab桿沿導(dǎo)軌由靜止開始下滑,導(dǎo)軌和金屬桿接觸良好,不計它們之間的摩擦。
圖3
(1)由b向a方向看到的裝置如圖4所示,請在此圖中畫出ab桿下滑過程中某時刻的受力示意圖;
圖4
(2)在加速下滑過程中,當(dāng)ab桿的速度大小為v時,求此時ab桿中的電流及其加速度的大小;
(3)求在下滑過程中,ab桿可以達(dá)到的速度最大值。
解析:(1)重力mg,豎直向下,支持力N,垂直斜面向上,安培力F,沿斜面向上,如圖5所示。
圖5
(2)當(dāng)ab桿速度為v時,感應(yīng)電動勢E=BLv,此時電路中電流。
ab桿受到安培力F=BIL=。
根據(jù)牛頓運動定律,有mgsinθ-F=ma,即mgsinθ-。
所以a=gsinθ-。
(3)當(dāng)a=0,即=mgsinθ時,ab桿達(dá)到最大速度vm。
所以。
點評:①分析ab桿受到的合外力,可以分析加速度的變化,加速度隨速度的變化而變化,當(dāng)加速度等于零時,金屬ab桿做勻速運動,速度達(dá)到最大值。
②當(dāng)桿勻速運動時,金屬桿的重力勢能全部轉(zhuǎn)化為回路中的電能,在求最大速度vm時,也可以用能量轉(zhuǎn)換法,即解得:。
因為功率P=Fv,P恒定,那么外力F就隨v而變化。要注意分析外力、安培力和加速度的變化,當(dāng)加速度為零時,速度達(dá)到最大值,安培力與外力平衡。
三、導(dǎo)體棒在恒定功率下由靜止開始運動
例3. 如圖6所示,水平平行放置的導(dǎo)軌上連有電阻R,并處于垂直軌道平面的勻強磁場中。今從靜止起用力拉金屬棒ab(ab與導(dǎo)軌垂直),若拉力恒定,經(jīng)時間t1后ab的速度為v,加速度為a1,最終速度可達(dá)2v;若拉力的功率恒定,經(jīng)時間t2后ab的速度也為v,加速度為a2,最終速度可達(dá)2v。求a1和a2滿足的關(guān)系。
圖6
解析:①在恒力F作用下由靜止開始運動,當(dāng)金屬棒的速度為v時金屬棒產(chǎn)生感應(yīng)電動勢E=BLv,回路中的電流,所以金屬棒受的安培力。
由牛頓第二定律得
當(dāng)金屬棒達(dá)到最終速度為2v時,勻速運動,則。
所以恒為
由以上幾式可求出
②設(shè)外力的恒定功率為P,在t2時刻速度為v,加速度為a2,由牛頓第二定律得
。
最終速度為2v時為勻速運動,則有
所以恒定功率。由以上幾式可求出。
點評:①由最大速度可以求出所加的恒力F,由最大速度也可求出恒定的功率P。②本題是典型的運用力學(xué)觀點分析解答的電磁感應(yīng)問題。注重進(jìn)行力的分析、運動狀態(tài)分析以及能的轉(zhuǎn)化分析等。涉及的知識點多,綜合性強,適當(dāng)訓(xùn)練將有利于培養(yǎng)綜合分析問題的能力。在求功率時,也可以根據(jù)能量守恒:速度為2v時勻速運動,外力的功率等于電功率,。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com