湖北省天門六校2009屆高三第四次聯(lián)考

數(shù)學理科 

本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分150分,考試時間120分鐘。

第Ⅰ卷(選擇題 共50分)

一.選擇題:本大題共10個小題,每小題5分,共50分。在每小題給出的四個選項中,只有一項是符合題目要求的

1.f(x) =cos4x+sin4x的最小正周期是(    )

   A .            B.          C.         D.

2.已知,且a+b=1,則下列不等式中,正確的是(    )

A.                                               B.        

C.                              D.

3.設是非零向量,的圖象是一條直線,則必有(    )

       A.                B.                 C.            D.

4.從一塊短軸長為2b的橢圓形玻璃鏡中劃出一塊面積最大的矩形,其面積的取值范圍是[3b2,4b2],則這一橢圓離心率e的取值范圍是(    )

A.                   B. 

C.                   D.

5.已知{}是等差數(shù)列,, ,則過點

<code id="emzyv"><noframes id="emzyv"></noframes></code>
<code id="emzyv"><noframes id="emzyv"></noframes></code>

20070324

A.4              B.              C.-4                 D.-

6.已知AB是橢圓=1的長軸,若把線段AB五等份,過每個分點作AB的垂線,分別與橢圓的上半部分相交于C、D、E、G四點,設F是橢圓的左焦點,則的值是(   )

A.15                  B.16                   C.18                   D.20

7.設是函數(shù)的反函數(shù),則成立的的取值范圍是

  A.                                                  B.         

C.                                          D.

8.在坐標平面內(nèi),與點A(1,2)的距離為1,且與點B(5,5)的距離為d的直線共有4條,則d的取值范圍是

A.0<d<4              B.d≥4       

C.4<d<6              D.以上結(jié)果都不對

9.已知,滿足且目標函數(shù)的最大值為7,最小值為1,則

。ā 。粒-2;    。拢;   C.1;    D.-1;

10.給出定義:若(其中m為整數(shù)),則m 叫做離實數(shù)x最近的整數(shù),記作= m. 在此基礎上給出下列關于函數(shù)的四個命題:    

①函數(shù)y=的定義域為R,值域為;

②函數(shù)y=的圖像關于直線)對稱;

③函數(shù)y=是周期函數(shù),最小正周期為1;

④函數(shù)y=上是增函數(shù)。

其中正確的命題的序號是(    )

A. ①         B.、冖       C ①②③       D ①④

 

第Ⅱ卷(非選擇題 共100分)

 

二.填空題:本大題共5小題,每小題5分,共25分。把答案填在答題卡相應位置上。

11.已知是拋物線的準線與雙曲線的兩條漸近線所圍成的三角形平面區(qū)域內(nèi)(含邊界)的任意一點,則的最大值為           

試題詳情

12.奇函數(shù)的反函數(shù)是,若,則的值是         

試題詳情

13.在算式“9×△+1×□=48”中的△,□中,分別填入兩個正整數(shù),使它們的倒數(shù)和最小,則這兩個數(shù)構成的數(shù)對為(△,□)應為                。

試題詳情

14.對任意兩個集合M、N,定義:,,設,,則       ________________。

試題詳情

15已知函數(shù)f (x)=-log2x正實數(shù)a、b、c成公差為正數(shù)的等差數(shù)列,且滿足

f (a) f (b)f (c)<0,若實數(shù)d是方程f (x)=0的一個解,那么下列四個判斷:

① d<a;  ②d>b;  ③d<c;  ④d>c中有可能成立的為                     (填序號)

 

試題詳情

三.解答題:本大題共6小題,共75分,解答應寫出文字說明,證明過程或演算步驟。

16.(本小題12分)已知中,,,

試題詳情

,(1)求關于的表達式;(2)求的值域;

試題詳情

 

 

 

 

 

 

 

 

 

試題詳情

17.(本小題滿分12分)已知數(shù)列的首項為,前項和為,且點在直線上,為常數(shù),。 
(1)求數(shù)列的通項公式;
(2)當,且是S中的一個最大項,試求的取值范圍。

 

 

 

 

 

 

 

試題詳情

18.(本小題12分)已知, ,.

試題詳情

(1)當時,求使不等式成立的x的取值范圍;

試題詳情

(2)求使不等式成立的x的取值范圍.

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

19.(本小題12分)為貫徹落實黨的十七大精神,加快新農(nóng)村建設步伐,某鎮(zhèn)政府投資c萬元生產(chǎn)甲乙兩種商品,據(jù)測算,投資甲商品x萬元,可獲得利潤P=x萬元,投資乙商品x萬元可獲得利潤Q=40萬元,如果鎮(zhèn)政府聘請你當投資顧問,試問對甲乙兩種商品的資金投入分別是多少萬元?才能獲得最大利潤,獲得最大利潤是多少萬元?

 

 

 

 

 

 

試題詳情

20.(本小題13分) 橢圓C的中心為坐標原點O,焦點在y軸上,離心率e = ,橢圓上的點到焦點的最短距離為1-e, 直線l與y軸交于點P(0,m),與橢圓C交于相異兩點A、B,且

試題詳情

(1)求橢圓方程;   (2)若,求m的取值范圍.

 

 

 

 

試題詳情

21.(本小題14分)設M是由滿足下列條件的函數(shù)構成的集合:“①方程有實數(shù)根;②函數(shù)的導數(shù)滿足

試題詳情

(1)判斷函數(shù)是否是集合M中的元素,并說明理由;

試題詳情

(2)若集合M中的元素具有下面的性質(zhì):“若的定義域為D,則對于任意,都存在,使得等式成立”

試題詳情

試用這一性質(zhì)證明:方程只有一個實數(shù)根;

試題詳情

(3)設是方程的實數(shù)根,求證:對于定義域中的任意的,當時,

 

試題詳情

一.BCAAC      DAAAC

 

二.11.5  12.0。保.(4,12)14.[-3,0)∪(3,+∞)。保耽佗冖

三.16解:(1)由正弦定理有:;。。。。。(2分)

    ∴,;。。。。。。。。。。。。。(4分)

                          。。。。。。。。。。。。。。。。。。。(7分)

(2)由;。。。。。。。。。。。。。。。。。。。。。。(8分)

;。。。。。。。。(10分)∴。。。。。。。。。。。。。(12分)

 

17。解:(Ⅰ)由題意可知    數(shù)列是等差數(shù)列  ………(2分)

,

時,

兩式相減,得      ………………………(4分)

時也成立

的通項公式為:     ………………………………(6分)

(Ⅱ)由前項和公式得

時,………………………………………(8分)

最大, 則有 ,解得 …………………………….(12分)

18。解:(Ⅰ)當時,,.

         . ……………………………………… 2分

         ∵ ,

    解得 .

∴ 當時,使不等式成立的x的取值范圍是

.…………………………………………… 5分

      (Ⅱ)∵ ,…… 8分

            ∴ 當m<0時,;

               當m=0時, ;

               當時,;

               當m=1時,;

               當m>1時,.  .............................................12

19。解:設對甲廠投入x萬元(0≤x≤c),則對乙廠投入為c―x萬元.所得利潤為

y=x+40(0≤x≤c) ……………………(3分)

=t(0≤t≤),則x=c-t2

∴y=f(t)=-t2+40t+c=-(t―20)2+c+400……………………(6分)

≥20,即c≥400時,則t=20, 即x=c―400時, ymax =c+400… (8分)

當0<<20, 即0<c<400時,則t=,即x=0時,ymax=40 .…(10分)

答:若政府投資c不少于400萬元時,應對甲投入c―400萬元, 乙對投入400萬元,可獲得最大利潤c+400萬元.政府投資c小于400萬元時,應對甲不投入,的把全部資金c都投入乙商品可獲得最大利潤40萬元.…(12分)

20。解:(1)設C:+=1(a>b>0),設c>0,c2=a2-b2,由條件知a-c=,=,

∴a=1,b=c=,

故C的方程為:y2+=1      ………………………………………(5分)

(2)由=λ得-=λ(-),(1+λ)=+λ,

∴λ+1=4,λ=3             ………………………………………………(7分)

設l與橢圓C交點為A(x1,y1),B(x2,y2

得(k2+2)x2+2kmx+(m2-1)=0

Δ=(2km)2-4(k2+2)(m2-1)=4(k2-2m2+2)>0 (*)

x1+x2=, x1x2=   ………………………………………………(9分)

∵=3 ∴-x1=3x2

消去x2,得3(x1+x22+4x1x2=0,∴3()2+4=0

整理得4k2m2+2m2-k2-2=0   ………………………………………………(11)分

 

m2=時,上式不成立;m2≠時,k2=,                                  

因λ=3 ∴k≠0 ∴k2=>0,∴-1<m<- 或 <m<1

容易驗證k2>2m2-2成立,所以(*)成立

即所求m的取值范圍為(-1,-)∪(,1)     ………………………(13分)

21. 解:(Ⅰ)易知0是f(x)-x=0的根………………………(1分)

                           0<(x)=+sinx≤<1………..(3分)

            ∴f(x)∈M…………………………………………………(4分)

 

Ⅱ)假設存在兩個實根,則,不妨設,由題知存在實數(shù),使得成立!,,∴

與已知矛盾,所以方程只有一個實數(shù)根……………………(8分)

(Ⅲ) 不妨設,∵,∴為增函數(shù),∴,又∵∴函數(shù)為減函數(shù),∴,………………….(10分)

,即,……..(12分)

….(14分)

 


同步練習冊答案