2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試
文科數(shù)學(xué)(必修+選修I)
本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分.第Ⅰ卷1至2頁(yè).第Ⅱ卷3至10頁(yè).
考試結(jié)束后,將本試卷和答題卡一并交回.
第Ⅰ卷
注意事項(xiàng):
1.答第Ⅰ卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考試科目涂寫(xiě)在答題卡上.
2.每小題選出答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑.如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào).不能答在試題卷上.
3.本卷共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
參考公式:
如果事件互斥,那么 球的表面積公式
如果事件相互獨(dú)立,那么 其中表示球的半徑
球的體積公式
如果事件在一次試驗(yàn)中發(fā)生的概率是,那么
次獨(dú)立重復(fù)試驗(yàn)中事件恰好發(fā)生次的概率 其中表示球的半徑
一、選擇題
4.函數(shù)的圖像關(guān)于( )
A.軸對(duì)稱(chēng) B. 直線(xiàn)對(duì)稱(chēng)
C. 坐標(biāo)原點(diǎn)對(duì)稱(chēng) D. 直線(xiàn)對(duì)稱(chēng)
5.若,則( )
A.<< B. << C. << D. <<
6.設(shè)變量滿(mǎn)足約束條件:,則的最小值為( )
A. B. C. D.
7.設(shè)曲線(xiàn)在點(diǎn)(1,)處的切線(xiàn)與直線(xiàn)平行,則( )
A.1 B. C. D.
8.正四棱錐的側(cè)棱長(zhǎng)為,側(cè)棱與底面所成的角為,則該棱錐的體積為( )
A.3 B.6 C.9 D.18
9.的展開(kāi)式中的系數(shù)是( )
A. B. C.3 D.4
10.函數(shù)的最大值為( )
A.1 B. C. D.2
11.設(shè)是等腰三角形,,則以為焦點(diǎn)且過(guò)點(diǎn)的雙曲線(xiàn)的離心率為( )
A. B. C. D.
12.已知球的半徑為2,相互垂直的兩個(gè)平面分別截球面得兩個(gè)圓.若兩圓的公共弦長(zhǎng)為2,則兩圓的圓心距等于( )
A.1 B. C. D.2
2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試
文科數(shù)學(xué)(必修+選修I)
第Ⅱ卷
13.設(shè)向量,若向量與向量共線(xiàn),則 .
二、填空題:本大題共4小題,每小題5分,共20分.把答案填在題中橫線(xiàn)上.
14.從10名男同學(xué),6名女同學(xué)中選3名參加體能測(cè)試,則選到的3名同學(xué)中既有男同學(xué)又有女同學(xué)的不同選法共有 種(用數(shù)字作答)
15.已知是拋物線(xiàn)的焦點(diǎn),是上的兩個(gè)點(diǎn),線(xiàn)段AB的中點(diǎn)為,則的面積等于 .
16.平面內(nèi)的一個(gè)四邊形為平行四邊形的充要條件有多個(gè),如兩組對(duì)邊分別平行,類(lèi)似地,寫(xiě)出空間中的一個(gè)四棱柱為平行六面體的兩個(gè)充要條件:
充要條件① ;
充要條件② .
(寫(xiě)出你認(rèn)為正確的兩個(gè)充要條件)
17.(本小題滿(mǎn)分10分)
在中,,.
(Ⅰ)求的值;
(Ⅱ)設(shè),求的面積.
三、解答題:本大題共6小題,共70分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.
甲、乙兩人進(jìn)行射擊比賽,在一輪比賽中,甲、乙各射擊一發(fā)子彈.根據(jù)以往資料知,甲擊中8環(huán),9環(huán),10環(huán)的概率分別為0.6,0.3,0.1,乙擊中8環(huán),9環(huán),10環(huán)的概率分別為0.4,0.4,0.2.
設(shè)甲、乙的射擊相互獨(dú)立.
(Ⅰ)求在一輪比賽中甲擊中的環(huán)數(shù)多于乙擊中環(huán)數(shù)的概率;
(Ⅱ)求在獨(dú)立的三輪比賽中,至少有兩輪甲擊中的環(huán)數(shù)多于乙擊中環(huán)數(shù)的概率.
20.(本小題滿(mǎn)分12分)
如圖,正四棱柱中,,點(diǎn)在上且.
(Ⅱ)求二面角的大。
21.(本小題滿(mǎn)分12分)
設(shè),函數(shù).
(Ⅰ)若是函數(shù)的極值點(diǎn),求的值;
(Ⅱ)若函數(shù),在處取得最大值,求的取值范圍.
22.(本小題滿(mǎn)分12分)
設(shè)橢圓中心在坐標(biāo)原點(diǎn),是它的兩個(gè)頂點(diǎn),直線(xiàn)與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).
(Ⅰ)若,求的值;
(Ⅱ)求四邊形面積的最大值.
2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試
評(píng)分說(shuō)明:
1.本解答給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要
考查內(nèi)容比照評(píng)分參考制訂相應(yīng)的評(píng)分細(xì)則.
2.對(duì)計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變?cè)擃}的內(nèi)容和
難度,可視影響的程度決定后繼部分的給分,但不得超過(guò)該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.
3.解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).
4.只給整數(shù)分?jǐn)?shù).選擇題不給中間分.
一、選擇題
1.C 2.B 3.D 4.C 5.C 6.D
7.A 8.B 9.A 10.B 11.B 12.C
二、填空題
13.2 14.420 15.2
16.兩組相對(duì)側(cè)面分別平行;一組相對(duì)側(cè)面平行且全等;對(duì)角線(xiàn)交于一點(diǎn);底面是平行四邊形.
注:上面給出了四個(gè)充要條件.如果考生寫(xiě)出其他正確答案,同樣給分.
1.若且是,則是( )
A.第一象限角 B. 第二象限角 C. 第三象限角 D. 第四象限角
【答案】C
【解析】,在三、四象限;,在一、三象限,∴選C
2.設(shè)集合,( )
A. B. C. D.
【答案】B
【解析】,,∴
【高考考點(diǎn)】集合的運(yùn)算,整數(shù)集的符號(hào)識(shí)別
3.原點(diǎn)到直線(xiàn)的距離為( )
A.1 B. C.2 D.
【答案】D
【解析】
【高考考點(diǎn)】點(diǎn)到直線(xiàn)的距離公式
4.函數(shù)的圖像關(guān)于( )
A.軸對(duì)稱(chēng) B. 直線(xiàn)對(duì)稱(chēng)
C. 坐標(biāo)原點(diǎn)對(duì)稱(chēng) D. 直線(xiàn)對(duì)稱(chēng)
【答案】C
【解析】是奇函數(shù),所以圖象關(guān)于原點(diǎn)對(duì)稱(chēng)
【高考考點(diǎn)】函數(shù)奇偶性的性質(zhì)
5.若,則( )
A.<< B. << C. << D. <<
【答案】C
【解析】由,令且取知<<
6.設(shè)變量滿(mǎn)足約束條件:,則的最小值為( )
A. B. C. D.
【答案】D
于是
7.設(shè)曲線(xiàn)在點(diǎn)(1,)處的切線(xiàn)與直線(xiàn)平行,則( )
A.1 B. C. D.
【答案】A
【解析】,于是切線(xiàn)的斜率,∴有
8.正四棱錐的側(cè)棱長(zhǎng)為,側(cè)棱與底面所成的角為,則該棱錐的體積為( )
A.3 B.6 C.9 D.18
【答案】B
【解析】高,又因底面正方形的對(duì)角線(xiàn)等于,∴底面積為
,∴體積
【備考提示】在底面積的計(jì)算時(shí),要注意多思則少算
9.的展開(kāi)式中的系數(shù)是( )
A. B. C.3 D.4
【答案】A
【解析】
【易錯(cuò)提醒】容易漏掉項(xiàng)或該項(xiàng)的負(fù)號(hào)
10.函數(shù)的最大值為( )
A.1 B. C. D.2
【答案】B
【解析】,所以最大值是
【高考考點(diǎn)】三角函數(shù)中化為一個(gè)角的三角函數(shù)問(wèn)題
【備考提示】三角函數(shù)中化為一個(gè)角的三角函數(shù)問(wèn)題是三角函數(shù)在高考中的熱點(diǎn)問(wèn)題
11.設(shè)是等腰三角形,,則以為焦點(diǎn)且過(guò)點(diǎn)的雙曲線(xiàn)的離心率為( )
A. B. C. D.
【答案】B
【解析】由題意,所以,由雙曲線(xiàn)的定義,有
,∴
【高考考點(diǎn)】雙曲線(xiàn)的有關(guān)性質(zhì),雙曲線(xiàn)第一定義的應(yīng)用
12.已知球的半徑為2,相互垂直的兩個(gè)平面分別截球面得兩個(gè)圓.若兩圓的公共弦長(zhǎng)為2,則兩圓的圓心距等于( )
A.1 B. C. D.2
【答案】C
【解析】設(shè)兩圓的圓心分別為、,球心為,公共弦為AB,其中點(diǎn)為E,則為矩形,于是對(duì)角線(xiàn),而,∴
【高考考點(diǎn)】球的有關(guān)概念,兩平面垂直的性質(zhì)
13.設(shè)向量,若向量與向量共線(xiàn),則 .
【答案】 2
【解析】=則向量與向量共線(xiàn)
14.從10名男同學(xué),6名女同學(xué)中選3名參加體能測(cè)試,則選到的3名同學(xué)中既有男同學(xué)又有女同學(xué)的不同選法共有 種(用數(shù)字作答)
【答案】 420
【解析】
15.已知是拋物線(xiàn)的焦點(diǎn),是上的兩個(gè)點(diǎn),線(xiàn)段AB的中點(diǎn)為,則的面積等于 .
【答案】 2
【解析】設(shè)過(guò)M的直線(xiàn)方程為,由
∴,,由題意,于是直線(xiàn)方程為
,,∴,焦點(diǎn)F(1,0)到直線(xiàn)的距離
∴的面積是2
16.平面內(nèi)的一個(gè)四邊形為平行四邊形的充要條件有多個(gè),如兩組對(duì)邊分別平行,類(lèi)似地,寫(xiě)出空間中的一個(gè)四棱柱為平行六面體的兩個(gè)充要條件:
充要條件① ;
充要條件② .
(寫(xiě)出你認(rèn)為正確的兩個(gè)充要條件)
【答案】?jī)山M相對(duì)側(cè)面分別平行;一組相對(duì)側(cè)面平行且全等;對(duì)角線(xiàn)交于一點(diǎn);底面是平行四邊形.
注:上面給出了四個(gè)充要條件.如果考生寫(xiě)出其他正確答案,同樣給分.
三、解答題
17.解:
(Ⅰ)由,得,
由,得.??????????????????????????????????????????????????????????????????????????????????????? 2分
所以.??????????????????????????????????????????? 5分
(Ⅱ)由正弦定理得.?????????????????????????????????????????????????? 8分
所以的面積.????????????????????????? 10分
18.解:
設(shè)數(shù)列的公差為,則
,
,
.????????????????????????????????????????????????????????????????????????????????????????????? 3分
由成等比數(shù)列得,
即,
整理得,
解得或.???????????????????????????????????????????????????????????????????????????????????????????????????? 7分
當(dāng)時(shí),.????????????????????????????????????????????????????????????????????????????????? 9分
當(dāng)時(shí),,
于是.????????????????????????????????????????????????????? 12分
19.解:
記分別表示甲擊中9環(huán),10環(huán),
分別表示乙擊中8環(huán),9環(huán),
表示在一輪比賽中甲擊中的環(huán)數(shù)多于乙擊中的環(huán)數(shù),
表示在三輪比賽中至少有兩輪甲擊中的環(huán)數(shù)多于乙擊中的環(huán)數(shù),
分別表示三輪中恰有兩輪,三輪甲擊中環(huán)數(shù)多于乙擊中的環(huán)數(shù).
(Ⅰ),????????????????????????????????????????????????????????????????????????????? 2分
.??????????????????????????????????????????????????????????????????????? 6分
(Ⅱ),???????????????????????????????????????????????????????????????????????????????????????????????????? 8分
,
,
.????????????????????????????????? 12分
20.解法一:
依題設(shè),,.
(Ⅰ)連結(jié)交于點(diǎn),則.
由三垂線(xiàn)定理知,.???????????????????????????????????????????????????????????????????????????????????? 3分
由于,
故,,
與互余.
于是.
與平面內(nèi)兩條相交直線(xiàn)都垂直,
所以平面.??????????????????????????????????????????????????????????????????????????????????????????????? 6分
(Ⅱ)作,垂足為,連結(jié).由三垂線(xiàn)定理知,
故是二面角的平面角.????????????????????????????????????????????????????????????????? 8分
,
,.
,.
又,.
.
解法二:
以為坐標(biāo)原點(diǎn),射線(xiàn)為軸的正半軸,
建立如圖所示直角坐標(biāo)系.
依題設(shè),.
,.?????????????????????????????????? 3分
(Ⅰ)因?yàn),?/p>
故,.
又,
所以平面.??????????????????????????????????????????????????????????????????????????????????????????????? 6分
(Ⅱ)設(shè)向量是平面的法向量,則
,.
故,.
令,則,,.?????????????????????????????????????????????????????????????? 9分
等于二面角的平面角,
.
所以二面角的大小為.????????????????????????????????????????????????????????? 12分
21.解:
(Ⅰ).
因?yàn)槭?a >函數(shù)的極值點(diǎn),所以,即,因此.
經(jīng)驗(yàn)證,當(dāng)時(shí),是函數(shù)的極值點(diǎn).??????????????????????????????????????????????? 4分
(Ⅱ)由題設(shè),.
當(dāng)在區(qū)間上的最大值為時(shí),
,
即.
故得.??????????????????????????????????????????????????????????????????????????????????????????????????????????????? 9分
反之,當(dāng)時(shí),對(duì)任意,
,
而,故在區(qū)間上的最大值為.
綜上,的取值范圍為.??????????????????????????????????????????????????????????????????????????????? 12分
22.(Ⅰ)解:依題設(shè)得橢圓的方程為,
直線(xiàn)的方程分別為,.???????????????????????????????????????????? 2分
如圖,設(shè),其中,
故.①
由知,得;
由在上知,得.
所以,
化簡(jiǎn)得,
解得或.??????????????????????????????????????????????????????????????????????????????????????????????????? 6分
(Ⅱ)解法一:根據(jù)點(diǎn)到直線(xiàn)的距離公式和①式知,點(diǎn)到的距離分別為,
.???????????????????????????????????????????????????????????????? 9分
又,所以四邊形的面積為
,
當(dāng),即當(dāng)時(shí),上式取等號(hào).所以的最大值為.????????????????????????????? 12分
解法二:由題設(shè),,.
設(shè),,由①得,,
故四邊形的面積為
???????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 9分
,
當(dāng)時(shí),上式取等號(hào).所以的最大值為.?????????????????????????????????????????????? 12分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com