16. 已知圓方程為:. (Ⅰ)直線過點.且與圓交于.兩點.若.求直線的方程; (Ⅱ)過圓上一動點作平行于軸的直線.設與軸的交點為.若向量.求動點的軌跡方程.并說明此軌跡是什么曲線. 查看更多

 

題目列表(包括答案和解析)

(本小題共13分)已知橢圓的右焦點為為橢圓的上頂點,為坐標原點,且△是等腰直角三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存在直線交橢圓于,兩點, 且使點為△的垂心(垂心:三角形三邊高線的交點)?若存在,求出直線的方程;若不存在,請說明理由.

 

查看答案和解析>>

(本小題共13分)已知橢圓的右焦點為,為橢圓的上頂點,為坐標原點,且△是等腰直角三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點分別作直線,交橢圓于兩點,設兩直線的斜率分別為,,且,證明:直線過定點().

 

查看答案和解析>>

(本小題共13分)已知橢圓的右焦點為,為橢圓的上頂點,為坐標原點,且△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線交橢圓于兩點, 且使點為△的垂心(垂心:三角形三邊高線的交點)?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

(本題滿分13分)本題共有2個小題,第1小題滿分6分,第2小題滿分7分.

已知橢圓()過點,其左、右焦點分別為,且

(1)求橢圓的方程;

(2)若是直線上的兩個動點,且,則以為直徑的圓是否過定點?請說明理由.

查看答案和解析>>

(本題滿分13分)本題共有2個小題,第1小題滿分6分,第2小題滿分7分.

已知橢圓()過點,其左、右焦點分別為,且

(1)求橢圓的方程;

(2)若是直線上的兩個動點,且,圓C是以為直徑的圓,其面積為S,求的最小值以及當取最小值時圓C的方程.

查看答案和解析>>


同步練習冊答案