15.解:(Ⅰ)因?yàn)樗?--2分 又------4分 所以( ----------------------------6分 ----------9分 ----------8分 ----------7分 (Ⅱ)若 .由.得 解得-----------------------9分 當(dāng).即時(shí)此時(shí)有P=. 所以為所求. 綜上.實(shí)數(shù)a的取值范圍是----------13分 查看更多

 

題目列表(包括答案和解析)

在棱長(zhǎng)為的正方體中,是線段的中點(diǎn),.

(1) 求證:^

(2) 求證://平面;

(3) 求三棱錐的表面積.

【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運(yùn)用。第一問(wèn)中,利用,得到結(jié)論,第二問(wèn)中,先判定為平行四邊形,然后,可知結(jié)論成立。

第三問(wèn)中,是邊長(zhǎng)為的正三角形,其面積為

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面,所以,

所以是直角三角形,其面積為

同理的面積為, 面積為.  所以三棱錐的表面積為.

解: (1)證明:根據(jù)正方體的性質(zhì),

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image028.png">,

所以,又,所以,,

所以^.               ………………4分

(2)證明:連接,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image033.png">,

所以為平行四邊形,因此,

由于是線段的中點(diǎn),所以,      …………6分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image035.png">平面,所以∥平面.   ……………8分

(3)是邊長(zhǎng)為的正三角形,其面積為,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面,所以

所以是直角三角形,其面積為,

同理的面積為,              ……………………10分

面積為.          所以三棱錐的表面積為

 

查看答案和解析>>

已知函數(shù)

(1)若函數(shù)的圖象經(jīng)過(guò)P(3,4)點(diǎn),求a的值;

(2)比較大小,并寫出比較過(guò)程;

(3)若,求a的值.

【解析】本試題主要考查了指數(shù)函數(shù)的性質(zhì)的運(yùn)用。第一問(wèn)中,因?yàn)楹瘮?shù)的圖象經(jīng)過(guò)P(3,4)點(diǎn),所以,解得,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image007.png">,所以.

(2)問(wèn)中,對(duì)底數(shù)a進(jìn)行分類討論,利用單調(diào)性求解得到。

(3)中,由知,.,指對(duì)數(shù)互化得到,,所以,解得所以, 或 .

解:⑴∵函數(shù)的圖象經(jīng)過(guò),即.        … 2分

,所以.             ………… 4分

⑵當(dāng)時(shí),;

當(dāng)時(shí),. ……………… 6分

因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image021.png">,

當(dāng)時(shí),上為增函數(shù),∵,∴.

.當(dāng)時(shí),上為減函數(shù),

,∴.即.      …………………… 8分

⑶由知,.所以,(或).

.∴,       … 10分

 或 ,所以, 或 .

 

查看答案和解析>>

已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過(guò)點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問(wèn)中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問(wèn)中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時(shí),求證:;

(Ⅱ)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分

,得證。

第二問(wèn),建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………3分

(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>


同步練習(xí)冊(cè)答案