20.已知:定義在R上的函數(shù)f (x)為奇函數(shù).且在上是增函數(shù). (Ⅰ)求證:f (x)在上也是增函數(shù), (Ⅱ)對任意.求實數(shù)m的取值范圍.使不等式 恒成立. 解:(Ⅰ)證明:設(shè).且. 則.且. ∵在上是增函數(shù).∴. 又為奇函數(shù).∴, ∴, 即在上也是增函數(shù). (Ⅱ)∵函數(shù)在和上是增函數(shù).且在R上是奇函數(shù). ∴在上是增函數(shù). 于是 . ∵當時.的最大值為.∴當時.不等式恒成立. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分) 已知函數(shù)f (x)=ex-k-x,其中x∈R. (1)當k=0時,若g(x)= 定義域為R,求實數(shù)m的取值范圍;(2)給出定理:若函數(shù)f (x)在[a,b]上連續(xù),且f (a)·f (b)<0,則函數(shù)y=f (x)在區(qū)間(a,b)內(nèi)有零點,即存在x0∈(a,b),使f (x0)=0;運用此定理,試判斷當k>1時,函數(shù)f (x)在(k,2k)內(nèi)是否存在零點.

查看答案和解析>>

(本小題滿分14分) 已知函數(shù)f (x)=ex-k-x,其中x∈R. (1)當k=0時,若g(x)= 定義域為R,求實數(shù)m的取值范圍;(2)給出定理:若函數(shù)f (x)在[a,b]上連續(xù),且f (a)·f (b)<0,則函數(shù)y=f (x)在區(qū)間(a,b)內(nèi)有零點,即存在x0∈(a,b),使f (x0)=0;運用此定理,試判斷當k>1時,函數(shù)f (x)在(k,2k)內(nèi)是否存在零點.

查看答案和解析>>

(本小題滿分14分) 已知函數(shù)f (x)=ex-k-x,其中x∈R. (1)當k=0時,若g(x)= 定義域為R,求實數(shù)m的取值范圍;(2)給出定理:若函數(shù)f (x)在[a,b]上連續(xù),且f (a)·f (b)<0,則函數(shù)y=f (x)在區(qū)間(a,b)內(nèi)有零點,即存在x0∈(a,b),使f (x0)=0;運用此定理,試判斷當k>1時,函數(shù)f (x)在(k,2k)內(nèi)是否存在零點.

查看答案和解析>>

(本小題滿分14分)

已知是定義在R上的奇函數(shù),且,求:

(1)的解析式。   

(2)已知,求函數(shù)在區(qū)間上的最小值。

 

查看答案和解析>>

(本小題滿分14分)已知函數(shù)是定義域為R的偶函數(shù),其圖像均在x軸的上方,對任意的,都有,且,又當時,為增函數(shù)。

(1)求的值;

(2)對于任意正整數(shù),不等式:恒成立,求實數(shù)的取值

范圍。

 

查看答案和解析>>


同步練習冊答案