19.n≥2時.1+x+x2+--+xn<n+xn+1. 用數學歸納法證明 查看更多

 

題目列表(包括答案和解析)

(2013•崇明縣一模)設函數fn(x)=xn+bx+c(n∈N*,b,c∈R)
(1)當n=2,b=1,c=-1時,求函數fn(x)在區(qū)間(
1
2
,1)
內的零點;
(2)設n≥2,b=1,c=-1,證明:fn(x)在區(qū)間(
1
2
,1)
內存在唯一的零點;
(3)設n=2,若對任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范圍.

查看答案和解析>>

h(x)=x+
m
x
,x∈[
1
4
,5]
,其中m是不等于零的常數,
(1)(理)寫出h(4x)的定義域;
(文)m=1時,直接寫出h(x)的值域;
(2)(文、理)求h(x)的單調遞增區(qū)間;
(3)已知函數f(x)(x∈[a,b]),定義:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函數f(x)在D上的最小值,maxf(x)|x∈D表示函數f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)當m=1時,設M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;
(文)當m=1時,|h1(x)-h2(x)|≤n恒成立,求n的取值范圍.

查看答案和解析>>

設函數fn(x)=xn+bx+c(n∈N*,b,c∈R)
(1)當n=2,b=1,c=-1時,求函數fn(x)在區(qū)間(
1
2
,1)
內的零點;
(2)設n≥2,b=1,c=-1,證明:fn(x)在區(qū)間(
1
2
,1)
內存在唯一的零點;
(3)設n=2,若對任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范圍.

查看答案和解析>>

已知:函數f(x)=-
1
6
x3+
1
2
x2+x
,x∈R.
(Ⅰ)求證:函數f(x)的圖象關于點A(1,
4
3
)
中心對稱,并求f(-2007)+f(-2006)+…+f(0)+f(1)+…+f(2009)的值.
(Ⅱ)設g(x)=f′(x),an+1=g(an),n∈N+,且1<a1<2,求證:
(。┱堄脭祵W歸納法證明:當n≥2時,1<an
3
2

(ⅱ)|a1-
2
|+|a2-
2
|+…+|an-
2
|<2

查看答案和解析>>

設函數f(x)=
3x
x+3
,觀察:f1(x)=f(x)=
3x
x+3
,f2(x)=f(f1(x))=
3x
2x+3
f3(x)=f(f2(x))=
x
x+1
,f4(x)=f(f3(x))=
3x
4x+3
,…
根據以上事實,由歸納推理可得:
當n∈N*且n≥2時,fn(x)=f(fn-1(x))=
 

查看答案和解析>>


同步練習冊答案