20.設(shè)G.M分別為不等邊△ABC的重心與外心.A.GM//AB. (1)求點C的軌跡方程, (2)設(shè)點C的軌跡為曲線E.是否存在直線.使過點(0.1)并與曲線E交于P.Q兩點.且滿足?若存在.求出直線的方程.若不存在.說明理由. 注:三角形的重心的概念和性質(zhì)如下:設(shè)△ABC的重心.且有. 解: 高三數(shù)學(xué)第二學(xué)期導(dǎo)師制(01) 查看更多

 

題目列表(包括答案和解析)

設(shè)G、M分別為不等邊△ABC的重心與外心,A(-1,0)、B(1,0),GM∥AB.
(1)求點C的軌跡方程;
(2)設(shè)點C的軌跡為曲線E,是否存在直線l,使l過點(0.1)并與曲線E交于P、Q兩點,且滿足
OP
OQ
=-2
?若存在,求出直線l的方程,若不存在,說明理由.
注:三角形的重心的概念和性質(zhì)如下:設(shè)△ABC的重心,且有
GD
GC
=
GE
GA
=
GF
GB
=
1
2

查看答案和解析>>

設(shè)G、M分別為不等邊△ABC的重心與外心,A(-1,0)、B(1,0),GM∥AB.
(1)求點C的軌跡方程;
(2)設(shè)點C的軌跡為曲線E,是否存在直線l,使l過點(0.1)并與曲線E交于P、Q兩點,且滿足數(shù)學(xué)公式?若存在,求出直線l的方程,若不存在,說明理由.
注:三角形的重心的概念和性質(zhì)如下:設(shè)△ABC的重心,且有數(shù)學(xué)公式

查看答案和解析>>

設(shè)G、M分別為不等邊△ABC的重心與外心,A(-1,0)、B(1,0),GMAB.
(1)求點C的軌跡方程;
(2)設(shè)點C的軌跡為曲線E,是否存在直線l,使l過點(0.1)并與曲線E交于P、Q兩點,且滿足
OP
OQ
=-2
?若存在,求出直線l的方程,若不存在,說明理由.
注:三角形的重心的概念和性質(zhì)如下:設(shè)△ABC的重心,且有
GD
GC
=
GE
GA
=
GF
GB
=
1
2

查看答案和解析>>

設(shè)G、M分別為不等邊△ABC的重心與外心,A(-1,0)、B(1,0),且 (λ∈R且λ≠0).

(1)求點C的軌跡E的方程;

(2)是否存在直線l,使l過點(0,1)并與曲線E交于P、Q兩點,且滿足·=-2?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

設(shè)G、M分別為不等邊△ABC的重心與外心,A(-1,0)、B(1,0),且

(1)求點C的軌跡E的方程;

(2)是否存在直線z,使Z過點(0,1)并與曲線E交于P、Q兩點,且滿足OP⊥OQ?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊答案