17.[解]設(shè)橢圓C的方程為 由題意 因為該二次方程的判別式△>0.所以直線與橢圓有兩個不同交點. - 設(shè) 查看更多

 

題目列表(包括答案和解析)

已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當(dāng)以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標(biāo)得到,又因為,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當(dāng)m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時,直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

已知曲線C:(m∈R)

(1)   若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;

(2)     設(shè)m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。

【解析】(1)曲線C是焦點在x軸上的橢圓,當(dāng)且僅當(dāng)解得,所以m的取值范圍是

(2)當(dāng)m=4時,曲線C的方程為,點A,B的坐標(biāo)分別為,

,得

因為直線與曲線C交于不同的兩點,所以

設(shè)點M,N的坐標(biāo)分別為,則

直線BM的方程為,點G的坐標(biāo)為

因為直線AN和直線AG的斜率分別為

所以

,故A,G,N三點共線。

 

查看答案和解析>>

已知中心在坐標(biāo)原點,焦點在軸上的橢圓C;其長軸長等于4,離心率為

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.

【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運用。

第一問中,可設(shè)橢圓的標(biāo)準(zhǔn)方程為 

則由長軸長等于4,即2a=4,所以a=2.又,所以,

又由于 

所求橢圓C的標(biāo)準(zhǔn)方程為

第二問中,

假設(shè)存在這樣的直線,設(shè),MN的中點為

 因為|ME|=|NE|所以MNEF所以

(i)其中若時,則K=0,顯然直線符合題意;

(ii)下面僅考慮情形:

,得,

,得

代入1,2式中得到范圍。

(Ⅰ) 可設(shè)橢圓的標(biāo)準(zhǔn)方程為 

則由長軸長等于4,即2a=4,所以a=2.又,所以,

又由于 

所求橢圓C的標(biāo)準(zhǔn)方程為

 (Ⅱ) 假設(shè)存在這樣的直線,設(shè),MN的中點為

 因為|ME|=|NE|所以MNEF所以

(i)其中若時,則K=0,顯然直線符合題意;

(ii)下面僅考慮情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是

 

查看答案和解析>>

精英家教網(wǎng)在A,B,C,D四小題中只能選做2題,每題10分,共計20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設(shè)M是把坐標(biāo)平面上的點的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關(guān)于x的不等式|x+2|+|x-1|≥a的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

在A,B,C,D四小題中只能選做2題,每題10分,共計20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設(shè)M是把坐標(biāo)平面上的點的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標(biāo)方程為:
(Ⅰ)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關(guān)于x的不等式|x+2|+|x-1|≥a的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案