在橢圓=1上有一點(diǎn)P.F1.F2是橢圓的左右焦點(diǎn).△F1PF2為直角三角形.則這樣的點(diǎn)P有(D) A.2個(gè) B.4個(gè) C.6個(gè) D.8個(gè) 查看更多

 

題目列表(包括答案和解析)

設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1
的左、右兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
3
2
)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo).
(2)已知圓心在原點(diǎn)的圓具有性質(zhì):若M、N是圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),點(diǎn)P是圓上的任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記作KPM、KPN那么KPMKPN=-1.試對(duì)橢圓
x2
a2
+
y2
b2
=1
寫(xiě)出類似的性質(zhì),并加以證明.

查看答案和解析>>

設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
3
2
)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;
(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.試對(duì)雙曲線
x2
a2
-
y2
b2
=1
寫(xiě)出具有類似特性的性質(zhì),并加以證明.

查看答案和解析>>

(14分)設(shè)F1、F2分別為橢圓C: =1(a>b>0)的左、右兩個(gè)焦點(diǎn).

(1)若橢圓C上的點(diǎn)A(1,)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);

(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;

(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.試對(duì)雙曲線寫(xiě)出具有類似特性的性質(zhì),并加以證明.

 

查看答案和解析>>

(14分)設(shè)F1、F2分別為橢圓C =1(ab>0)的左、右兩個(gè)焦點(diǎn).

(1)若橢圓C上的點(diǎn)A(1,)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);

(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;

(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPMkPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.試對(duì)雙曲線寫(xiě)出具有類似特性的性質(zhì),并加以證明.

 

查看答案和解析>>

設(shè)F1、F2分別為橢圓C:數(shù)學(xué)公式+數(shù)學(xué)公式=1(a>b>0)的左、右兩個(gè)焦點(diǎn).
(Ⅰ)若橢圓C上的點(diǎn)A(1,數(shù)學(xué)公式)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)P是(Ⅰ)中所得橢圓上的動(dòng)點(diǎn),Q(0,數(shù)學(xué)公式),求|PQ|的最大值;
(Ⅲ)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P在橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為KPM、KPN時(shí),那么KPM與KPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.設(shè)對(duì)雙曲線數(shù)學(xué)公式-數(shù)學(xué)公式=1寫(xiě)出具有類似特性的性質(zhì)(不必給出證明).

查看答案和解析>>


同步練習(xí)冊(cè)答案