題目列表(包括答案和解析)
已知各項(xiàng)都不為零的數(shù)列的前n項(xiàng)和為,,向量,其中N*,且∥.
(Ⅰ)求數(shù)列的通項(xiàng)公式及;
(Ⅱ)若數(shù)列的前n項(xiàng)和為,且(其中是首項(xiàng),第四項(xiàng)為的等比數(shù)列的公比),求證:.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的運(yùn)用。
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140140320381755_ST.files/image015.png">,對(duì)n=1, 分別求解通項(xiàng)公式,然后合并。利用,求解
(2)利用
裂項(xiàng)后求和得到結(jié)論。
解:(1) ……1分
當(dāng)時(shí),……2分
()……5分
……7分
……9分
證明:當(dāng)時(shí),
當(dāng)時(shí),
如圖,在正三棱柱ABC-A1B1C1中,底面ABC為正三角形,M、N、G分別是棱CC1、AB、BC的中點(diǎn),且.
(Ⅰ)求證:CN∥平面AMB1;
(Ⅱ)求證: B1M⊥平面AMG.
【解析】本試題主要是考查了立體幾何匯總線面的位置關(guān)系的運(yùn)用。第一問(wèn)中,要證CN∥平面AMB1;,只需要確定一條直線CN∥MP,既可以得到證明
第二問(wèn)中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到線線垂直,B1M⊥AG,結(jié)合線面垂直的判定定理和性質(zhì)定理,可以得證。
解:(Ⅰ)設(shè)AB1 的中點(diǎn)為P,連結(jié)NP、MP ………………1分
∵CM ,NP ,∴CM NP, …………2分
∴CNPM是平行四邊形,∴CN∥MP …………………………3分
∵CN 平面AMB1,MP奐 平面AMB1,∴CN∥平面AMB1…4分
(Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,
∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分
∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,
設(shè):AC=2a,則
…………………………8分
同理,…………………………………9分
∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,
………………………………10分
(本小題滿分12分)
閱讀下面內(nèi)容,思考后做兩道小題。
在一節(jié)數(shù)學(xué)課上,老師給出一道題,讓同學(xué)們先解,題目是這樣的:
已知函數(shù)f(x)=kx+b,1≤f(1)≤3,-1≤f(-1)≤1,求Z=f(2)的取值范圍。
題目給出后,同學(xué)們馬上投入緊張的解答中,結(jié)果很快出來(lái)了,大家解出的結(jié)果有很多個(gè),下面是其中甲、乙兩個(gè)同學(xué)的解法:
甲同學(xué)的解法:由f(1)=k+b,f(-1)=-k+b得
①+②得:0≤2b≤4,即0≤b≤2 ③
② ×(-1)+①得:-1≤k-b≤1 ④
④+②得:0≤2k≤4 ⑤
③+⑤得:0≤2k+b≤6。
又∵f(2)=2k+b
∴0≤f(2)≤6,0≤Z≤6
乙同學(xué)的解法是:由f(1)=k+b,f(-1)=-k+b得
①+②得:0≤2b≤4,即:0≤b≤2 ③
①-②得:2≤2k≤2,即:1≤k≤1
∴k=1,
∵f(2)=2k+b=1+b
由③得:1≤f(2)≤3
∴:1≤Z≤3
(Ⅰ)如果課堂上老師讓你對(duì)甲、乙兩同學(xué)的解法給以評(píng)價(jià),你如何評(píng)價(jià)?
(Ⅱ)請(qǐng)你利用線性規(guī)劃方面的知識(shí),再寫(xiě)出一種解法。
已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).
(1)求函數(shù)f(x)的表達(dá)式;
(2)若數(shù)列{an}滿足a1=,an+1=f(an),bn=-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=-1, ∴===,
∴{bn}為等比數(shù)列,q=.又∵a1=,∴b1=-1=,
bn=b1qn-1=n-1=n(n∈N*).……………………………9分
(3)證明:∵anbn=an=1-an=1-=,
∴a1b1+a2b2+…+anbn=++…+<++…+
==1-<1(n∈N*).
函數(shù)是定義在上的奇函數(shù),且。
(1)求實(shí)數(shù)a,b,并確定函數(shù)的解析式;
(2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)寫(xiě)出的單調(diào)減區(qū)間,并判斷有無(wú)最大值或最小值?如有,寫(xiě)出最大值或最小值。(本小問(wèn)不需要說(shuō)明理由)
【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運(yùn)用。第一問(wèn)中,利用函數(shù)是定義在上的奇函數(shù),且。
解得,
(2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。
(3)中,由2知,單調(diào)減區(qū)間為,并由此得到當(dāng),x=-1時(shí),,當(dāng)x=1時(shí),
解:(1)是奇函數(shù),。
即,,………………2分
,又,,,
(2)任取,且,
,………………6分
,
,,,,
在(-1,1)上是增函數(shù)!8分
(3)單調(diào)減區(qū)間為…………………………………………10分
當(dāng),x=-1時(shí),,當(dāng)x=1時(shí),。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com