兩直線與橢圓(q是參數(shù))的四個交點為頂點的四邊形的面積是( ) A. B. C. D. 24 查看更多

 

題目列表(包括答案和解析)

已知拋物線D的頂點是橢圓Q:
x2
4
+
y2
3
=1
的中心O,焦點與橢圓Q的右焦點重合,點A(x1,y1),B(x2,y2)(x1x2≠0)是拋物線D上的兩個動點,且|
OA
+
OB
|=|
OA
-
OB
|
(Ⅰ)求拋物線D的方程及y1y2的值;
(Ⅱ)求線段AB中點軌跡E的方程;
(Ⅲ)求直線y=
1
2
x
與曲線E的最近距離.

查看答案和解析>>

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
1
2
,以原點為圓心,橢圓的短半軸為半徑的圓與直線x-y+
6
=0
相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P(4,0),A,B是橢圓C上關于x軸對稱的任意兩個不同的點,連接PB交橢圓C于另一點E,證明直線AE與x軸相交于定點Q;
(Ⅲ)在(Ⅱ)的條件下,過點Q的直線與橢圓C交于M,N兩點,求
OM
ON
的取值范圍.

查看答案和解析>>

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)上的一動點P到右焦點的最短距離為2-
2
,且右焦點到右準線的距離等于短半軸的長.
(1)求橢圓C的方程;
(2)設P(4,0),A,B是橢圓C上關于x軸對稱的任意兩個不同的點,連接PB交橢圓C于另一點E,證明直線AE與x軸相交于定點Q;
(3)在(2)的條件下,過點Q的直線與橢圓C交于M,N兩點,求
OM
ON
的取值范圍.

查看答案和解析>>

(本小題滿分12分)[來源:學.科.網Z.X.X.K]

、分別是橢圓的左、右焦點.

(1)若是該橢圓上的一個動點,求的取值范圍;

(2)設過定點Q(0,2)的直線與橢圓交于不同的兩點M、N,且∠為銳角(其中為坐標原點),求直線的斜率的取值范圍.

(3)設是它的兩個頂點,直線AB相交于點D,與橢圓相交于E、F兩點.求四邊形面積的最大值.

 

查看答案和解析>>

(本小題滿分12分)設橢圓的兩個焦點是

   (1)設E是直線與橢圓的一個公共點,求使得取最小值時橢圓的方程;   (2)已知設斜率為的直線與條件(1)下的橢圓交于不同的兩點A,B,點Q滿足,且,求直線軸上截距的取值范圍。

查看答案和解析>>


同步練習冊答案