題目列表(包括答案和解析)
(本題滿分14分)
在梯形ABCD中,AB⊥AD,AB∥CD,A、B是兩個(gè)定點(diǎn),其坐
標(biāo)分別為(0,-1)、(0,1),C、D是兩個(gè)動點(diǎn),且滿足|CD|=|BC|.
(1)求動點(diǎn)C的軌跡E的方程;
(2)試探究在軌跡E上是否存在一點(diǎn)P?使得P到直線y=x-2的
距離最短;
(3)設(shè)軌跡E與直線所圍成的圖形的
面積為S,試求S的最大值。
其它解法請參照給分。
(本題滿分14分)
如圖3,在四棱錐P—ABCD中,底面為直角梯形,AD//BC,ÐBAD=90°,PA^底面ABCD,且PA=AD=AB=2BC=2,M,N分別為PC、PB的中點(diǎn).
(1)求證:PB^DM;
(2)求BD與平面ADMN所成角的大。
(3)求二面角B—PC—D的大小.
(本題滿分14分)
如圖3,在四棱錐P—ABCD中,底面為直角梯形,AD//BC,ÐBAD=90°,PA^底面ABCD,且PA=AD=AB=2BC=2,M,N分別為PC、PB的中點(diǎn).
(1)求證:PB^DM;
(2)求BD與平面ADMN所成角的大小;
(3)求二面角B—PC—D的大小.
(本題滿分14分)如圖,在四棱錐P—ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求異面直線PB與CD所成角的余弦值;
(Ⅲ)求點(diǎn)A到平面PCD的距離.
(本題滿分14分)
如圖3,在四棱錐P—ABCD中,底面為直角梯形,AD//BC,ÐBAD=90°,PA^底面ABCD,且PA=AD=AB=2BC=2,M,N分別為PC、PB的中點(diǎn).
(1)求證:PB^DM;
(2)求BD與平面ADMN所成角的大;
(3)求二面角B—PC—D的大小.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com