題目列表(包括答案和解析)
(本小題滿分14分)
如圖,已知四邊形ABCD 是矩形,PA⊥平面ABCD,M, N分別是AB, PC的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)求證:MN⊥DC;
(本小題滿分14分)如圖,已知矩形ABCD的邊AB="2" ,BC=,點(diǎn)E、F分別是邊AB、CD的中點(diǎn),沿AF、EC分別把三角形ADF和三角形EBC折起,使得點(diǎn)D和點(diǎn)B重合,記重合后的位置為點(diǎn)P。
(1)求證:平面PCE平面PCF;
(2)設(shè)M、N分別為棱PA、EC的中點(diǎn),求直線MN與平面PAE所成角的正弦;
(3)求二面角A-PE-C的大小。
(本小題滿分14分)如圖,已知矩形ABCD的邊AB=2 ,BC=,點(diǎn)E、F分別是邊AB、CD的中點(diǎn),沿AF、EC分別把三角形ADF和三角形EBC折起,使得點(diǎn)D和點(diǎn)B重合,記重合后的位置為點(diǎn)P。
(1)求證:平面PCE平面PCF;
(2)設(shè)M、N分別為棱PA、EC的中點(diǎn),求直線MN與平面PAE所成角的正弦;
(3)求二面角A-PE-C的大小。
(本小題滿分14分)已知四棱錐P—ABCD的三視圖如右圖所示,
其中正(主)視圖與側(cè)(左)視為直角三角形,俯視圖為正方形。
(1)求四棱錐P—ABCD的體積;
(2)若E是側(cè)棱上的動(dòng)點(diǎn)。問:不論點(diǎn)E在PA的
任何位置上,是否都有?
請(qǐng)證明你的結(jié)論?
(3)求二面角D—PA—B的余弦值。
(本小題滿分14分)
某學(xué)校要建造一個(gè)面積為10000平方米的運(yùn)動(dòng)場.如圖,運(yùn)動(dòng)場是由一個(gè)矩形ABCD和分別以AD、BC為直徑的兩個(gè)半圓組成.跑道是一條寬8米的塑膠跑道,運(yùn)動(dòng)場除跑道外,其他地方均鋪設(shè)草皮.已知塑膠跑道每平方米造價(jià)為150元,草皮每平方米造價(jià)為30元
(1)設(shè)半圓的半徑OA= (米),試建立塑膠跑道面積S與的函數(shù)關(guān)系S()
(2)由于條件限制,問當(dāng)取何值時(shí),運(yùn)動(dòng)場造價(jià)最低?(精確到元)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com