已知:向量.求:. 解法一:由.又由條件得.∴. ∴. 解法二:∵. ∴. 查看更多

 

題目列表(包括答案和解析)

已知四棱錐的底面為直角梯形,,底面,且,的中點。

(1)證明:面;

(2)求所成的角;

(3)求面與面所成二面角的余弦值.

【解析】(1)利用面面垂直的性質(zhì),證明CD⊥平面PAD.

(2)建立空間直角坐標系,寫出向量的坐標,然后由向量的夾角公式求得余弦值,從而得所成角的大小.

(3)分別求出平面的法向量和面的一個法向量,然后求出兩法向量的夾角即可.

 

查看答案和解析>>

已知向量),向量,

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關系式的運用。

(1)問中∵,∴,…………………1分

,得到三角關系是,結合,解得。

(2)由,解得,結合二倍角公式,和,代入到兩角和的三角函數(shù)關系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯(lián)立方程解得,5分

     ……………6分

(Ⅱ)∵,,  …………7分

,               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知, ;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到,

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴ ,

 

查看答案和解析>>


同步練習冊答案