題目列表(包括答案和解析)
(本小題滿分12分)
已知直線l1:4x:-3y+6=0和直線l2:x=-,.若拋物線C:y2=2px上的點到直線l1和直線l2的距離之和的最小值為2.
(I )求拋物線C的方程;
(II)直線l過拋物線C的焦點F與拋物線交于A,B兩點,且AA1,BB1都垂直于直線l2,垂足為A1,B1,直線l2與y軸的交點為Q,求證:為定值。
(本小題滿分12分) 已知函數(shù).
(I)若f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(Ⅱ)記f(x)在的最小值為f(t),求t的值。
(本小題滿分12分)
已知向量 a = (cos x,sin x),b = (-cos x,cos x),c = (-1,0)
(I) 若 x = ,求向量 a、c 的夾角;
(II) 當 x∈[,] 時,求函數(shù) f (x) = 2a·b + 1 的最大值。
(本小題滿分12分)
已知向量 a = (cos x,sin x),b = (-cos x,cos x),c = (-1,0)
(I) 若 x = ,求向量 a、c 的夾角;
(II) 當 x∈[,] 時,求函數(shù) f (x) = 2a·b + 1 的最大值。
(本小題滿分12分)
已知m=(cosωx+sinωx,cosωx),n=(cosωx-sinωx,2sinωx),其中ω>0,若函數(shù)f(x)=m·n,且f(x)的對稱中心到f(x)的對稱軸的最近距離不小于.
(I)求ω的取值范圍;
(II)在△ABC中,a,b,c分別是內(nèi)角A,B,C的對邊,且a=1,b+c=2,當ω取最大值時,f(A)=1,求△ABC的面積.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com