題目列表(包括答案和解析)
已知函數(shù)f(x)=ax3+x2-x (a∈R且a≠0)
(1)若函數(shù)f(x)在(2,+∞)上存在單調(diào)遞增區(qū)間,求a的取值范圍.
(2)證明:當(dāng)a>0時(shí),函數(shù)在f(x)在區(qū)間()上不存在零點(diǎn)
設(shè)x1,x2為方程f(x)=0的兩根.
(Ⅰ)求的取值范圍;
(Ⅱ)若當(dāng)|x1-x2|最小時(shí),g(x)的極大值比極小值大,求g(x)的解析式.
b |
已知函數(shù)f(x)=ax3-x2-x+a(a∈R且a≠0)
(1)若函數(shù)f(x)在(2,+∞)上為單調(diào)遞增區(qū)間,求a的取值范圍.
(2)若g(x)=a2x4-x+1,討論方程:f(x)=g(x)根的個(gè)數(shù).
已知函數(shù)f(x)=ax3+bx2-x+c(a,b,c∈R且a≠0)
(1)若b=1且f(x)在(2,+∞)上存在單調(diào)遞增區(qū)間,求a的取值范圍
(2)已知存在實(shí)數(shù)x1,x2(x1≠x2)滿足f(x1)=f(x2),是否存在實(shí)數(shù)a,b,c使f(x)在處的切線斜率為0,若存在,求出一組實(shí)數(shù)a,b,c否則說明理由.
CACD CCBA
9、 10、2:1 11、 12、 13、4
14、a<-1 15、
16、
17、解:(I)依題意
…………2分
…………4分
bn=8+8×(n-1)=8n …………5分
(II) …………6分
…………12分
18、(1)3
(2)底面邊長為2,高為4是,體積最大,最大體積為16
19、
略解、(1)因?yàn)閒′(x)=3ax2+2x-1,依題意存在(2,+∞)的非空子區(qū)間使3ax2+2x-1>0成立,即 在x∈(2,+∞)某子區(qū)間上恒成立,令h(x)=,求得h(x)的最小值為,故
(2)由已知a>0
令f′(x)=3ax2+2x-1>0
得故f(x)在區(qū)間()上是減函數(shù), 即f(x)在區(qū)間()上恒大于零。故當(dāng)a>0時(shí),函數(shù)在f(x)在區(qū)間()上不存在零點(diǎn)
20、(1)f(1)=3………………………………………………………………………………(1分)
f(2)=6………………………………………………………………………………(2分)
當(dāng)x=1時(shí),y=2n,可取格點(diǎn)2n個(gè);當(dāng)x=2時(shí),y=n,可取格點(diǎn)n個(gè)
∴f(n)=3n…………………………………………………………………………(4分)
(2)………………………………………………(9分)
∴T1<T2=T3>T4>…>Tn
故Tn的最大值是T2=T3=
∴m≥………………………………………………………………()
21、解:(Ⅰ)設(shè),
且, …………………2分
…………………3分
. ………………………………………………4分
∴動(dòng)點(diǎn)M的軌跡C是以O(shè)(0,0)為頂點(diǎn),以(1,0)為焦點(diǎn)的拋物線(除去原點(diǎn)).
…………………………………………5分
(Ⅱ)解法一:(1)當(dāng)直線垂直于軸時(shí),根據(jù)拋物線的對稱性,有;
……………6分
(2)當(dāng)直線與軸不垂直時(shí),依題意,可設(shè)直線的方程為,,則A,B兩點(diǎn)的坐標(biāo)滿足方程組
消去并整理,得
,
. ……………7分
設(shè)直線AE和BE的斜率分別為,則:
=
. …………………9分
,
,
,
.
綜合(1)、(2)可知. …………………10分
解法二:依題意,設(shè)直線的方程為,,則A,B兩點(diǎn)的坐標(biāo)滿足方程組:
消去并整理,得
,
. ……………7分
設(shè)直線AE和BE的斜率分別為,則:
=
. …………………9分
,
,
,
. ……………………………………………………10分
(Ⅲ)假設(shè)存在滿足條件的直線,其方程為,AD的中點(diǎn)為,與AD為直徑的圓相交于點(diǎn)F、G,FG的中點(diǎn)為H,則,點(diǎn)的坐標(biāo)為.
,
,
. …………………………12分
,
令,得
此時(shí),.
∴當(dāng),即時(shí),(定值).
∴當(dāng)時(shí),滿足條件的直線存在,其方程為;當(dāng)時(shí),滿足條件的直線不存在.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com