①是周期函數(shù) ②是它的一條對稱軸 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)=|sinx|+|cosx|(x∈R),如下關于它的性質(zhì)敘述正確的個數(shù)有
數(shù)學公式是它的一個周期;        ②它的值域[1,數(shù)學公式];
③直線x=數(shù)學公式是它的圖象的一條對稱軸; ③它在[-數(shù)學公式,0]上單調(diào)遞增.


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

函數(shù)f(x)=|sinx|+|cosx|(x∈R),如下關于它的性質(zhì)敘述正確的個數(shù)有
是它的一個周期;                              
②它的值域[1,];
③直線x=是它的圖象的一條對稱軸;  
④它在[﹣,0]上單調(diào)遞增.
[     ]
A.1
B.2
C.3
D.4

查看答案和解析>>

設函數(shù)f(x)=
a
b
-
3
2
,
a
=(3sin(ωx+φ),
3
sin(ωx+φ)),
b
=(sin(ωx+φ),cos(ωx+φ))
其周期為π,且x=
π
12
是它的一條對稱軸.
(1)求f(x)的解析式;
(2)當x∈[0,
π
4
]
時,不等式f(x)+a>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

若函數(shù)y=Asin(ωx+φ)+m的最大值為4,最小值為0,最小正周期為
π
2
,直線x=
π
3
是其圖象的一條對稱軸,則它的解析式是( 。
A、y=4sin(4x+
π
6
B、y=2sin(2x+
π
3
C、y=2sin(4x+
π
3
D、y=2sin(4x+
π
6
)+2

查看答案和解析>>

若函數(shù)yAsin(ωxφ)+m的最大值為4,最小值為0,最小正周期為,直線x=是其圖象的一條對稱軸,則它的一個解析式是       (    )

A.y=4sin                                 B.y=2sin+2

C.y=2sin+2                            D.y=2sin+2

 

查看答案和解析>>

一、選擇題

1.C 解析:關于y軸的對稱圖形,可得

圖象,再向右平移一個單位,即可得的圖象,即的圖

2,4,6

2.A 解析:由題可知,故選A.

3.D 解析:上恒成立,即恒成立,故選D.

4.C  解析:令公比為q,由a1=3,前三項的和為21可得q2+q-6=0,各項都為正數(shù),所以q=2,所以,故選C.

5.C  解析:由圖可知,陰影部分面積.

6.A  解析:故在[-2,2]上最大值為,所以最小值為,故選A.

7.A  解析:y值對應1,x可對應±1,y值對應4,x可對應±2,故定義域共有{1,2},{1,-2},{-1,2},{-1,-2},{1,-1,2},{1,-1,-2},{1,2,-2},{-1,2,-2},{-,1,-2,2}共9種情況.

8.B  可采取特例法,例皆為滿足條件的函數(shù),一一驗證可知選B.

二、填空題:

9.答案:6   解析:∵     ∴a7+a­11=6.

10.答案a=3、2π  解析:的上半圓

面積,故為2π.

11.答案:20  解析:由數(shù)列相關知識可知

12.答案:

解析:由題可知 ,故定義域為

13.答案:2   解析:由a,b,c成等差數(shù)列知①,由②,

由c>b>a知角B為銳角,③,聯(lián)立①②③得b=2.

故當時,

三、解答題:

15.解:(Ⅰ)由題可知函數(shù)定義域關于原點對稱.

    當,

    則

    ∴

    當

    則,

   ∴

    綜上所述,對于,∴函數(shù)是偶函數(shù).

(Ⅱ)當x>0時,,

∴函數(shù)上是減函數(shù),函數(shù)上是增函數(shù).

(另證:當;

∴函數(shù)上是減函數(shù),在上是增函數(shù).

16.解:(Ⅰ)∵函數(shù)圖象過點A(0,1)、B(,1)

  ∴b=c

∵當

  ③

聯(lián)立②③得        

(Ⅱ)①由圖象上所有點向左平移個單位得到的圖象

②由的圖象上所有點的縱坐標變?yōu)樵瓉淼?sub>倍,得到

的圖象

③由的圖象上所有點向下平移一個單位,得到

的圖象

17.(1)證明:由題設,得

又a1-1=1,

所以數(shù)列{an-n}是首項為1,且公比為4的等比數(shù)列.

(Ⅱ)解:由(Ⅰ)可知,于是數(shù)列{ an }的通項公式為

所以數(shù)列{an}的前n項和

18.分析:求停車場面積,需建立長方形的面積函數(shù). 這里自變量的選取十分關鍵,通常有代數(shù)和三角兩種設未知數(shù)的方法,如果設長方形PQCR的一邊長為x(不妨設PR=x),則另一邊長,

這樣SPQCR=PQ?PR=x?(100-),但該函數(shù)的最值不易求得,如果將∠BAP作為自變量,用它可表示PQ、PR,再建立面積函數(shù),則問題就容易得多,于是可求解如下;

解:延長RP交AB于M,設∠PAB=,則

AM=90

           

    ,   ∵

    ∴當,SPQCR有最大值

    答:長方形停車場PQCR面積的最大值為平方米.

    19.解:(Ⅰ)【方法一】由,

    依題設可知,△=(b+1)24c=0.

    .

    【方法二】依題設可知

    為切點橫坐標,

    于是,化簡得

    同法一得

    (Ⅱ)由

    可得

    依題設欲使函數(shù)內(nèi)有極值點,

    則須滿足

    亦即 ,

    故存在常數(shù),使得函數(shù)內(nèi)有極值點.

    (注:若,則應扣1分. )

    20.解:(Ⅰ)設函數(shù)

       (Ⅱ)由(Ⅰ)可知

    可知使恒成立的常數(shù)k=8.

    (Ⅲ)由(Ⅱ)知 

    可知數(shù)列為首項,8為公比的等比數(shù)列

    即以為首項,8為公比的等比數(shù)列. 則 

    .


    同步練習冊答案