(Ⅱ)設(shè).是數(shù)列的前項(xiàng)和.求使得對(duì)所有都成立的最小正整數(shù). 查看更多

 

題目列表(包括答案和解析)

 

設(shè)數(shù)列的前項(xiàng)和,數(shù)列滿足.

(Ⅰ)若成等比數(shù)列,試求的值;

(Ⅱ)是否存在,使得數(shù)列中存在某項(xiàng)滿足成等差數(shù)列?若存在,請(qǐng)指出符合題意的的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.

 

 

 

 

 

 

查看答案和解析>>

設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記                                      

(I)求數(shù)列與數(shù)列的通項(xiàng)公式;

(II)設(shè)數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得成立?若存在,找出一個(gè)正整數(shù);若不存在,請(qǐng)說(shuō)明理由;

(III)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有

查看答案和解析>>

設(shè)等差數(shù)列的前項(xiàng)和為

(1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;

(2)設(shè)數(shù)列的通項(xiàng)公式為,問(wèn): 是否存在正整數(shù)t,使得

成等差數(shù)列?若存在,求出tm的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

設(shè)數(shù)列的前項(xiàng)和為,對(duì)一切,點(diǎn)在函數(shù)的圖象上.
(1)求a1,a2,a3值,并求的表達(dá)式;
(2)將數(shù)列依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為(),(,),(,),(,,);(),(),(,),(,,);(),…,分別計(jì)算各個(gè)括號(hào)內(nèi)所有項(xiàng)之和,并設(shè)由這些和按原來(lái)括號(hào)的前后順序構(gòu)成的數(shù)列為,求的值;w*w^w.k&s#5@u.c~o*m
(3)設(shè)為數(shù)列的前項(xiàng)積,是否存在實(shí)數(shù),使得不等式對(duì)一切都成立?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

設(shè)等差數(shù)列的前項(xiàng)和為

(1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;

(2)設(shè)數(shù)列的通項(xiàng)公式為,問(wèn): 是否存在正整數(shù)t,使得

成等差數(shù)列?若存在,求出t和m的值;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

一、選擇題:本大題每小題5分,滿分50分.

1

2

3

4

5

6

7

8

9

10

C

A

A

C

B

A

B

D

D

B

二、填空題:本大題共5小題,每小題5分,滿分20分,其中14,15題是選做題,考生只能選做一題,,若兩題全都做的,只計(jì)算前一題的得分.

11.(2,+∞)     12.    13. 4      14.     15. 9

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說(shuō)明、證明過(guò)程或演算步驟.

16.(本小題滿分12分)

解:(Ⅰ)∵ ,   ………………1分

  ………………4分

又 ∵  ,  ∴    …………………5分

(Ⅱ)由,…………………7分

   …………………………9分

由正弦定理 , 得 ……………………12分

17.(本小題滿分13分)

證明: (1) ∵ 三棱柱為直三棱柱,

         ∴  平面, ∴,

     ∵  , , ,

       ∴ ,

∴   , 又 ,

   ∴ 平面

∴      ……………………………………7分

   (2) 令的交點(diǎn)為, 連結(jié).

       ∵  的中點(diǎn), 的中點(diǎn), ∴ .

       又 ∵平面, 平面,

      ∴∥平面.    ………………………13分

18.(本小題滿分13分)

解: (1) 由題意得  , 即 ,…………………1分

        當(dāng)時(shí) , ,…………4分

         當(dāng)時(shí), , ………………5分

         ∴  , ……………………6分

     (2) 由(1)得,…………………8分

           ∴ 

                   . ……………………11分

          因此,使得成立的必須且只需滿足, 即,

故滿足要求的的最小正整數(shù)………………13分

19.(本小題滿分14分)

解: (1)設(shè)圓的圓心為,

依題意圓的半徑     ……………… 2分

∵ 圓軸上截得的弦的長(zhǎng)為.

  

故    ………………………… 4分

 ∴   

    ∴  圓的圓心的軌跡方程為 ………………… 6分

(2)    ∵   ,  ∴   ……………………… 9分

令圓的圓心為, 則有 () ,…………… 10分

又  ∵   …………………… 11分

∴    ……………………… 12分

∴       ……………………… 13分

∴   圓的方程為   …………………… 14分

21.(本小題滿分14分)

解:(Ⅰ)由已知

解得,   …………………2分

∴   ,     ∴     …………4分

∴  . ……………………5分

   (Ⅱ)在(Ⅰ)條件下,在區(qū)間恒成立,即在區(qū)間恒成立,

從而在區(qū)間上恒成立,…………………8分

令函數(shù),

則函數(shù)在區(qū)間上是減函數(shù),且其最小值,

的取值范圍為…………………………10分

   (Ⅲ)由,得

∵       ∴,………………11分

設(shè)方程的兩根為,則,,

∵  ,  ∴  ,    ∴,

∵  ,  ∴  ,

      ∴  ……………14分

21.(本小題滿分14分)

解:  (Ⅰ)解:當(dāng)時(shí),,,……………1分

,則.…………………3分

所以,曲線在點(diǎn)處的切線方程為,

.……………4分

(Ⅱ)解:.…………6分

由于,以下分兩種情況討論.

(1)當(dāng)時(shí),令,得到,,

當(dāng)變化時(shí),的變化情況如下表:

0

0

極小值

極大值

所以在區(qū)間,內(nèi)為減函數(shù),在區(qū)間內(nèi)為增函數(shù)

故函數(shù)在點(diǎn)處取得極小值,且,

函數(shù)在點(diǎn)處取得極大值,且.…………………10分

(2)當(dāng)時(shí),令,得到,

當(dāng)變化時(shí),的變化情況如下表:

0

0

極大值

極小值

所以在區(qū)間,內(nèi)為增函數(shù),在區(qū)間內(nèi)為減函數(shù).

函數(shù)處取得極大值,且

函數(shù)處取得極小值,且.………………14分

 

 

 


同步練習(xí)冊(cè)答案