(Ⅱ)判斷函數(shù)分別在區(qū)間上的單調(diào)性.并加以證明. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=lnx,g(x)=
12
ax2+bx
,記h(x)=f(x)-g(x).
(1)若a=0,且h(x)<0在(0,+∞)上恒成立,求實(shí)數(shù)b的取值范圍;
(2)若b=2,且h(x)=f(x)-g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(3)若a≠0,設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)圖象C2交于點(diǎn)P、Q,過線段PQ的中點(diǎn)作x軸的垂線分別交C1,C2于點(diǎn)M、N,請判斷C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線能否平行,并說明你的理由.

查看答案和解析>>

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax2+bx
,記h(x)=f(x)-g(x).
(1)若a=0,且h(x)<0在(0,+∞)上恒成立,求實(shí)數(shù)b的取值范圍;
(2)若b=2,且h(x)=f(x)-g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(3)若a≠0,設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)圖象C2交于點(diǎn)P、Q,過線段PQ的中點(diǎn)作x軸的垂線分別交C1,C2于點(diǎn)M、N,請判斷C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線能否平行,并說明你的理由.

查看答案和解析>>

已知函數(shù)f(x)=lnx,,記h(x)=f(x)-g(x).
(1)若a=0,且h(x)<0在(0,+∞)上恒成立,求實(shí)數(shù)b的取值范圍;
(2)若b=2,且h(x)=f(x)-g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(3)若a≠0,設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)圖象C2交于點(diǎn)P、Q,過線段PQ的中點(diǎn)作x軸的垂線分別交C1,C2于點(diǎn)M、N,請判斷C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線能否平行,并說明你的理由.

查看答案和解析>>

(14分)已知函數(shù),,記.
(1)若,且上恒成立,求實(shí)數(shù)的取值范圍;
(2)若,且存在單調(diào)遞減區(qū)間,求的取值范圍;
(3)若,設(shè)函數(shù)的圖象與函數(shù)圖象交于點(diǎn)、,過線段的中點(diǎn)作軸的垂線分別交,于點(diǎn)、,請判斷在點(diǎn)處的切線與在點(diǎn)處的切線能否平行,并說明你的理由.

查看答案和解析>>

精英家教網(wǎng)精英家教網(wǎng)(理)已知函數(shù)f(x)=
ln(2-x2)
|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個程序框圖,試構(gòu)造一個公差不為零的等差數(shù)列
{an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請說明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點(diǎn)O、G、H是否共線,并說明理由.

查看答案和解析>>

一、選擇題

1.C 解析:關(guān)于y軸的對稱圖形,可得

圖象,再向右平移一個單位,即可得的圖象,即的圖

2,4,6

2.A 解析:由題可知,故選A.

3.D 解析:上恒成立,即恒成立,故選D.

4.C  解析:令公比為q,由a1=3,前三項(xiàng)的和為21可得q2+q-6=0,各項(xiàng)都為正數(shù),所以q=2,所以,故選C.

5.C  解析:由圖可知,陰影部分面積.

6.A  解析:故在[-2,2]上最大值為,所以最小值為,故選A.

7.A  解析:y值對應(yīng)1,x可對應(yīng)±1,y值對應(yīng)4,x可對應(yīng)±2,故定義域共有{1,2},{1,-2},{-1,2},{-1,-2},{1,-1,2},{1,-1,-2},{1,2,-2},{-1,2,-2},{-,1,-2,2}共9種情況.

8.B  可采取特例法,例皆為滿足條件的函數(shù),一一驗(yàn)證可知選B.

二、填空題:

9.答案:6   解析:∵     ∴a7+a­11=6.

10.答案a=3、2π  解析:的上半圓

面積,故為2π.

11.答案:20  解析:由數(shù)列相關(guān)知識可知

12.答案:

解析:由題可知 ,故定義域?yàn)?sub>

13.答案:2   解析:由a,b,c成等差數(shù)列知①,由②,

由c>b>a知角B為銳角,③,聯(lián)立①②③得b=2.

故當(dāng)時,

三、解答題:

15.解:(Ⅰ)由題可知函數(shù)定義域關(guān)于原點(diǎn)對稱.

    當(dāng),

    則,

    ∴

    當(dāng)

    則,

   ∴

    綜上所述,對于,∴函數(shù)是偶函數(shù).

(Ⅱ)當(dāng)x>0時,,

設(shè)

當(dāng)

∴函數(shù)上是減函數(shù),函數(shù)上是增函數(shù).

(另證:當(dāng)

∴函數(shù)上是減函數(shù),在上是增函數(shù).

16.解:(Ⅰ)∵函數(shù)圖象過點(diǎn)A(0,1)、B(,1)

  ∴b=c

∵當(dāng)

  ③

聯(lián)立②③得        

(Ⅱ)①由圖象上所有點(diǎn)向左平移個單位得到的圖象

②由的圖象上所有點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?sub>倍,得到

的圖象

③由的圖象上所有點(diǎn)向下平移一個單位,得到

的圖象

17.(1)證明:由題設(shè),得

又a1-1=1,

所以數(shù)列{an-n}是首項(xiàng)為1,且公比為4的等比數(shù)列.

(Ⅱ)解:由(Ⅰ)可知,于是數(shù)列{ an }的通項(xiàng)公式為

所以數(shù)列{an}的前n項(xiàng)和

18.分析:求停車場面積,需建立長方形的面積函數(shù). 這里自變量的選取十分關(guān)鍵,通常有代數(shù)和三角兩種設(shè)未知數(shù)的方法,如果設(shè)長方形PQCR的一邊長為x(不妨設(shè)PR=x),則另一邊長,

這樣SPQCR=PQ?PR=x?(100-),但該函數(shù)的最值不易求得,如果將∠BAP作為自變量,用它可表示PQ、PR,再建立面積函數(shù),則問題就容易得多,于是可求解如下;

解:延長RP交AB于M,設(shè)∠PAB=,則

AM=90

    •        

      設(shè),   ∵

      ∴當(dāng),SPQCR有最大值

      答:長方形停車場PQCR面積的最大值為平方米.

      19.解:(Ⅰ)【方法一】由,

      依題設(shè)可知,△=(b+1)24c=0.

      .

      【方法二】依題設(shè)可知

      為切點(diǎn)橫坐標(biāo),

      于是,化簡得

      同法一得

      (Ⅱ)由

      可得

      依題設(shè)欲使函數(shù)內(nèi)有極值點(diǎn),

      則須滿足

      亦即 ,

      故存在常數(shù),使得函數(shù)內(nèi)有極值點(diǎn).

      (注:若,則應(yīng)扣1分. )

      20.解:(Ⅰ)設(shè)函數(shù)

         (Ⅱ)由(Ⅰ)可知

      可知使恒成立的常數(shù)k=8.

      (Ⅲ)由(Ⅱ)知 

      可知數(shù)列為首項(xiàng),8為公比的等比數(shù)列

      即以為首項(xiàng),8為公比的等比數(shù)列. 則 

      .


      同步練習(xí)冊答案