(1)且≥.可得 查看更多

 

題目列表(包括答案和解析)

可行域
x+y-3≥0
x-2y+3≥0
2x-y-3≤0
的頂點是A(1,2),B(2,1),C(3,3).z=kx+y(k為常數(shù)),若使得z取得的最大值為4,且最優(yōu)解是唯一的,則k=
1
3
1
3

查看答案和解析>>

可行域的頂點是A(1,2),B(2,1),C(3,3).z=kx+y(k為常數(shù)),若使得z取得的最大值為4,且最優(yōu)解是唯一的,則k=   

查看答案和解析>>

精英家教網(wǎng)如圖,某機場建在一個海灣的半島上,飛機跑道AB的長為4.5km,且跑道所在的直線與海岸線l的夾角為60°(海岸線可以看作是直線),跑道上離海岸線距離最近的點B到海岸線的距離BC=4
3
km.D為海灣一側(cè)海岸線CT上的一點,設(shè)CD=x(km),點D對跑道AB的視角為θ.
(1)將tanθ 表示為x的函數(shù);
(2)求點D的位置,使θ取得最大值.

查看答案和解析>>

如圖,某地為了開發(fā)旅游資源,欲修建一條連接風(fēng)景點P和居民區(qū)O的公路,點P所在的山坡面與山腳所在水平面α所成的二面角為θ(0°<θ<90°),且sinθ=
2
5
,點P到平面α的距離PH=0.4(km).沿山腳原有一段筆直的公路AB可供利用、從點O到山腳修路的造價為a萬元/km,原有公路改建費用為
a
2
萬元/km、當(dāng)山坡上公路長度為lkm(1≤l≤2)時,其造價為(l2+1)a萬元、已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=
3
(km)

(Ⅰ)在AB上求一點D,使沿折線PDAO修建公路的總造價最;
(Ⅱ)對于(I)中得到的點D,在DA上求一點E,使沿折線PDEO修建公路的總造價最小.
(Ⅲ)在AB上是否存在兩個不同的點D′,E′,使沿折線PD′E′O修建公路的總造價小于(Ⅱ)中得到的最小總造價,證明你的結(jié)論、
精英家教網(wǎng)

查看答案和解析>>

為贏得2010年上海世博會的制高點,某公司最近進行了世博特許產(chǎn)品的市場分析,調(diào)查顯示,該產(chǎn)品每件成本9元,售價為30元,每天能賣出432件,該公司可以根據(jù)情況可變化價格x(-30≤x≤54)元出售產(chǎn)品;若降低價格,則銷售量增加,且每天多賣出的產(chǎn)品件數(shù)與商品單價的降低值|x|的平方成正比,已知商品單價降低2元時,每天多賣出24件;若提高價格,則銷售減少,減少的件數(shù)與提高價格x成正比,每提價1元則每天少賣8件,且僅在提價銷售時每件產(chǎn)品被世博管委會加收1元的管理費.
(Ⅰ)試將每天的銷售利潤y表示為價格變化值x的函數(shù);
(Ⅱ)試問如何定價才能使產(chǎn)品銷售利潤最大?

查看答案和解析>>


同步練習(xí)冊答案