解:在橢圓中. 查看更多

 

題目列表(包括答案和解析)

設橢圓C:數(shù)學公式(a>b>0)的一個頂點坐標為A(數(shù)學公式),且其右焦點到直線數(shù)學公式的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(數(shù)學公式),求證點M的所有“相關弦”的中點在同一條直線上;
(3)根據(jù)解決問題(2)的經驗與體會,請運用類比、推廣等思想方法,提出一個與“相關弦”有關的具有研究價值的結論,并加以解決.(本小題將根據(jù)所提出問題的層次性給予不同的分值)

查看答案和解析>>

設橢圓C:(a>b>0)的一個頂點坐標為A(),且其右焦點到直線的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(),求證點M的所有“相關弦”的中點在同一條直線上;
(3)根據(jù)解決問題(2)的經驗與體會,請運用類比、推廣等思想方法,提出一個與“相關弦”有關的具有研究價值的結論,并加以解決.(本小題將根據(jù)所提出問題的層次性給予不同的分值)

查看答案和解析>>

橢圓E的中心在原點,一個焦點是F(0,),并且直線l:y=3x-2被橢圓截得的弦的中點橫坐標為,求此橢圓的方程.

查看答案和解析>>

(12分)圓、橢圓、雙曲線都有對稱中心,統(tǒng)稱為有心圓錐曲線,它們統(tǒng)一的標準方程為.圓的很多優(yōu)美性質可以類比推廣到有心圓錐曲線中,如圓的“垂徑定理”的逆定理:圓的平分弦(不是直徑)的直徑垂直于弦. 類比推廣到有心圓錐曲線:已知直線與曲線交于兩點,的中點為,若直線(為坐標原點)的斜率都存在,則.這個性質稱為有心圓錐曲線的“垂徑定理”.

(Ⅰ)證明有心圓錐曲線的“垂徑定理”;

(Ⅱ)利用有心圓錐曲線的“垂徑定理”解答下列問題:

①     過點作直線與橢圓交于兩點,求的中點的軌跡的方程;

②     過點作直線與有心圓錐曲線交于兩點,是否存在這樣的直線使點為線段的中點?若存在,求直線的方程;若不存在,說明理由.

查看答案和解析>>

(1)若橢圓的方程是:
x2
a2
+
y2
b2
=1(a>b>0),它的左、右焦點依次為F1、F2,P是橢圓上異于長軸端點的任意一點.在此條件下我們可以提出這樣一個問題:“設△PF1F2的過P角的外角平分線為l,自焦點F2引l的垂線,垂足為Q,試求Q點的軌跡方程?”
對該問題某同學給出了一個正確的求解,但部分解答過程因作業(yè)本受潮模糊了,我們在
精英家教網(wǎng)
這些模糊地方劃了線,請你將它補充完整.
解:延長F2Q 交F1P的延長線于E,據(jù)題意,
E與F2關于l對稱,所以|PE|=|PF2|.
所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=
 
,
在△EF1F2中,顯然OQ是平行于EF1的中位線,
所以|OQ|=
1
2
|EF1|=
 

注意到P是橢圓上異于長軸端點的點,所以Q點的軌跡是
 

其方程是:
 

(2)如圖2,雙曲線的方程是:
x2
a2
-
y2
b2
=1(a,b>0),它的左、右焦點依次為F1、F2,P是雙曲線上異于實軸端點的任意一點.請你試著提出與(1)類似的問題,并加以證明.

查看答案和解析>>


同步練習冊答案