8.已知函數(shù)的導(dǎo)函數(shù)是,且則曲線在處的切線方程是 A.y=3x+5 B.y=3x+6 C.y=2x+5 D.y=2x+4 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過(guò)點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問(wèn),利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^(guò)點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點(diǎn)為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過(guò)點(diǎn)A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

已知函數(shù)f(x)的導(dǎo)函數(shù)是,且f(-1)=2,,則曲線y=f(x)在點(diǎn)x=-1處的切線方程是

[  ]

A.y=3x+5

B.y=3x+6

C.y=2x+5

D.y=2x+4

查看答案和解析>>

已知下列四個(gè)命題:
①若函數(shù)y=f(x)在x°處的導(dǎo)數(shù)f'(x°)=0,則它在x=x°處有極值;
②不論m為何值,直線y=mx+1均與曲線
x2
4
+
y2
b2
=1
有公共點(diǎn),則b≥1;
③設(shè)直線l1、l2的傾斜角分別為α、β,且1+tanβ-tanα+tanαtanβ=0,則l1和l2的夾角為45°;
④若命題“存在x∈R,使得|x-a|+|x+1|≤2”是假命題,則|a+1|>2;
以上四個(gè)命題正確的是
 
(填入相應(yīng)序號(hào)).

查看答案和解析>>

已知f(x)是可導(dǎo)的函數(shù),且
lim
x→0
f(x+2)-f(2)
2x
=-2
,則曲線y=f(x)在點(diǎn)(2,2)處的切線的一般式方程是
4x+y-10=0
4x+y-10=0

查看答案和解析>>

已知f(x)是可導(dǎo)的偶函數(shù),且
lim
x→0
f(2+x)-f(2)
2x
=-1
,則曲線y=f(x)在(-2,1)處的切線方程是______.

查看答案和解析>>

一、選擇題:

1.C  2.D  3.C  4.A   5.B  6.C  7.B   8.A   9.D  10.A  11.A  12.C

二、填空題:

13.         14. 26   15. -3    16.     17. 3         18.   

19.   20.(0,1) 21.     22.    23.765        24.5  

25.2          26.

三、解答題:

27、解:(1)∵cos3x=4cos3x-3cosx,則=4cos2x-3=2cos2x-1

∴f(x)=2cos2x-1+2sin2x

=2sin(2x+)-1                            

在2x+=2kπ+時(shí),f(x)取得最大值2-1

即在x=kπ+ (k∈Z)時(shí),f(x)取得最大值2-1 

(2)∵f(x)=2sin(2x+)-1

要使f(x)遞減,x滿足2kπ+≤2x+≤2kπ+

即kπ+≤x≤kπ+ (k∈Z)

又∵cosx≠0,即x≠kπ+ (k∈Z)               

  1. <input id="ocncg"><noframes id="ocncg"></noframes></input>

    <optgroup id="ocncg"><center id="ocncg"></center></optgroup>
      1.  

        28、解:(1)p(ξ個(gè)正面向上,4-ξ個(gè)背面向上的概率,其中ξ可能取值為0,1,2,3,4。

        ∴p(ξ=0)= (1-)2(1-a)2=(1-a)2

        p(ξ=1)= (1-)(1-a)2+(1-)2?a(1-a)= (1-a)

        p(ξ=2)= ()2(1-a)2+(1-)a(1-a)+ (1-)2? a2=(1+2a-2 a2)

        p(ξ=3)= ()2a(1-a)+ (1-) a2=

        p(ξ=4)= ()2 a2=a2             

        (2) ∵0<a<1,∴p(ξ=1) <p(ξ=1),p(ξ=4) <p(ξ=3)

        則p(ξ=2)- p(ξ=1)= (1+2a-2 a2)- =-≥0

        ,即a∈[]                

        (3)由(1)知ξ的數(shù)學(xué)期望為

        Eξ=0×(1-a)2+1× (1-a)+2× (1+2a-2a2)+3×+4×=2a+1

        29、解:(1)∵EF∥CD∥AB,EG∥PB,根據(jù)面面平行的判定定理

        ∴平面EFG∥平面PAB,又PA面PAB,∴AP∥平面EFG

        (2)∵平面PDC⊥平面ABCD,AD⊥DC

        ∴AD⊥平面PCD,而BC∥AD,∴BC⊥面EFD

        過(guò)C作CR⊥EF交EF延長(zhǎng)線于R點(diǎn)連GR,根據(jù)三垂線定理知

        ∠GRC即為二面角的平面角,∵GC=CR,∴∠GRC=45°,  

        故二面角G-EF-D的大小為45°。

        (3)Q點(diǎn)為PB的中點(diǎn),取PC中點(diǎn)M,則QM∥BC,∴QM⊥PC

        在等腰Rt△PDC中,DM⊥PC,∴PC⊥面ADMQ         

        30、解:(1)由已知可得,=(x+3,y),=(x-3,y),=(,0),

        2()2=?,∴2(x2-9)=x2-9+y2,

        即P點(diǎn)的軌跡方程(1-2)x2+y2=9(1-2)

        當(dāng)1-2>0,且≠0,即∈(-1,0)時(shí),有+=1,

        ∵1-2>0,∴>0,∴x2≤9。

        ∴P點(diǎn)的軌跡是點(diǎn)A1,(-3,0)與點(diǎn)A2(3,0) 

        當(dāng)=0時(shí),方程為x2+y2=9,P的軌跡是點(diǎn)A1(-3,0)與點(diǎn)A2(3,0)

        當(dāng)1-2<0,即入∈(-∞,-1)∪(1,+∞)時(shí),方程為-=1,P點(diǎn)的軌跡是雙曲線。

        當(dāng)1-2=0,即=±1時(shí),方程為y=0,P點(diǎn)的軌跡是射線。

        (2)過(guò)點(diǎn)A1且斜率為1的直線方程為y=x+3,

        當(dāng)=時(shí),曲線方程為+=1,

        由(1)知,其軌跡為點(diǎn)A1(-3,0)與A2(3,0)

        因直線過(guò)A1(-3,0),但不過(guò)A2(3,0)。

        所以,點(diǎn)B不存在。

        所以,在直線x=-9上找不到點(diǎn)C滿足條件。         

        31、解:(理)(1)f′(x)=-+a=

        (i)若a=0時(shí),f′(x)= >0x>0,f′(x)<0x<0

        ∴f(x)在(0,+∞)單調(diào)遞增,在(-∞,0)單調(diào)遞減。   

        (ii)若時(shí),f′(x)≤0對(duì)x∈R恒成立。

        ∴f(x)在R上單調(diào)遞減。                          

        (iii)若-1<a<0,由f′(x)>0ax2+2x+a>0<x<

        由f′(x)<0可得x>或x<

        ∴f(x)在[]單調(diào)遞增

        在(-∞,],[上單調(diào)遞減。

        綜上所述:若a≤-1時(shí),f(x)在(-∞,+∞)上單調(diào)遞減。

        (2)由(1)當(dāng)a=-1時(shí),f(x)在(-∞,+∞)上單調(diào)遞減。

        當(dāng)x∈(0,+∞)時(shí)f(x)<f(0)

        ∴l(xiāng)n(1+x2)-x<0 即ln(1+x2)<x

        ∴l(xiāng)n[(1+)(1+)……(1+)]

        =ln[(1+)(1+)+…ln(1+)<++…+

        =1-+-+…+=1-<1

        ∴(1+)(1+)……(1+)<e  

        32、解:(1)由題可知:與函數(shù)互為反函數(shù),所以,

        ,  (2)因?yàn)辄c(diǎn)在函數(shù)的圖像上,所以, 

        在上式中令可得:,又因?yàn)椋?img border=0 src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/453000f0a427eb304520be60641662b3.zip/76586/2009屆高考倒計(jì)時(shí)數(shù)學(xué)沖刺階段每日綜合模擬一練(4).files/image399.gif" hspace=12 >,,代入可解得:.所以,,(*)式可化為:

        (3)直線的方程為:,,

        在其中令,得,又因?yàn)?img border=0 src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/453000f0a427eb304520be60641662b3.zip/76586/2009屆高考倒計(jì)時(shí)數(shù)學(xué)沖刺階段每日綜合模擬一練(4).files/image244.gif" hspace=12 >在y軸上的截距為,所以,

        =,結(jié)合①式可得:            ②

        由①可知:當(dāng)自然數(shù)時(shí),,,

        兩式作差得:

        結(jié)合②式得:         ③

        在③中,令,結(jié)合,可解得:,

        又因?yàn)椋寒?dāng)時(shí),,所以,舍去,得

        同上,在③中,依次令,可解得:

        猜想:.下用數(shù)學(xué)歸納法證明.       

        (1)時(shí),由已知條件及上述求解過(guò)程知顯然成立.

        (2)假設(shè)時(shí)命題成立,即,則由③式可得:

        代入上式并解方程得:

        由于,所以,,所以,

        符合題意,應(yīng)舍去,故只有

        所以,時(shí)命題也成立.

        綜上可知:數(shù)列的通項(xiàng)公式為   

         

         


        同步練習(xí)冊(cè)答案