題目列表(包括答案和解析)
數(shù)列的前n項(xiàng)和記為
,
(1)t為何值時(shí),數(shù)列是等比數(shù)列?
(2)在(1)的條件下,若等差數(shù)列的前n項(xiàng)和
有最大值,且
,又
成等比數(shù)列,求
。
數(shù)列的前n項(xiàng)和記為
,前
項(xiàng)和記為
,對(duì)給定的常數(shù)
,若
是與
無關(guān)的非零常數(shù)
,則稱該數(shù)列
是“
類和科比數(shù)列”,
(理科做以下(1)(2)(3))
(1)、已知,求數(shù)列
的通項(xiàng)公式(5分);
(2)、證明(1)的數(shù)列是一個(gè) “
類和科比數(shù)列”(4分);
(3)、設(shè)正數(shù)列是一個(gè)等比數(shù)列,首項(xiàng)
,公比
,若數(shù)列
是一個(gè) “
類和科比數(shù)列”,探究
與
的關(guān)系(7分)
數(shù)列的前n項(xiàng)和記為
,
,點(diǎn)
在直線
上,n∈N*.
(1)求證:數(shù)列是等比數(shù)列,并求數(shù)列
的通項(xiàng)公式
;
(2)設(shè),
是數(shù)列
的前n項(xiàng)和,求
的值.
數(shù)列{}的前n項(xiàng)和記為
,a1=t,
=2
+1(n∈N+).
(Ⅰ)當(dāng)t為何值時(shí),數(shù)列{}是等比數(shù)列;
(Ⅱ)在(Ⅰ)的條件下,若等差數(shù)列{}的前n項(xiàng)和
有最大值,且
=15,又
a1+b1,a2+b2,a3+b3成等比數(shù)列,求.
數(shù)列的前n項(xiàng)和記為
,前
項(xiàng)和記為
,對(duì)給定的常數(shù)
,若
是與
無關(guān)的非零常數(shù)
,則稱該數(shù)列
是“
類和科比數(shù)列”,
(理科做以下(1)(2)(3))
(1)、已知,求數(shù)列
的通項(xiàng)公式(5分);
(2)、證明(1)的數(shù)列是一個(gè)
“
類和科比數(shù)列”(4分);
(3)、設(shè)正數(shù)列是一個(gè)等比數(shù)列,首項(xiàng)
,公比
,若數(shù)列
是一個(gè)
“
類和科比數(shù)列”,探究
與
的關(guān)系(7分)
11.70 12. 2 13. 14. 【-1,1】 15.(-1,1) 16.
17.
18、解: (1)由函數(shù)的圖像與x軸的任意兩個(gè)相鄰交點(diǎn)間的距離為
得函數(shù)周期為
,
直線
是函數(shù)
圖像的一條對(duì)稱軸,
,
或
,
,
,
.
.
(2)
,
即函數(shù)的單調(diào)遞增區(qū)間為
. ,
19、解:(1)設(shè)公比為q,由題知:2()=
+
∴,即
∴q=2,即
(2),所以
①
②
①-②:
∴
20、解:(Ⅰ) 由題知:
,
又∵平面平面
且交線為
∴
∴
又∵,且
∴
(Ⅱ)在平面ABCE內(nèi)作.
∵平面平面
且交線為
∴ ∴
就是
與平面
所成角
由題易求CF=1,DF=5,則
21、解:(1)f(x)=ax34ax2+4ax
f/(x)=3ax28ax+
2)(x
2)=0
x=
或2
∵f(x)有極大值32,而f(2)=0 ∴f()=
,a=1
(2)f/(x)=a(3x2)(x
2)
當(dāng)a>0時(shí),f(x)=[ 2,
]上遞增在[
]上遞減,
,
∴0<a<27
當(dāng)a<0時(shí),f(x)在[2,
]上遞減,在[
]上遞增,f(
2)=
,即
∴ 綜上
22、解(1)設(shè)過拋物線的焦點(diǎn)
的直線方程為
或
(斜率
不存在),則
得
,
當(dāng)(斜率
不存在)時(shí),則
又
,
所求拋物線方程為
(2)設(shè)
由已知直線的斜率分別記為:
,得
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com