(參考數(shù)據(jù):.) 查看更多

 

題目列表(包括答案和解析)

據(jù)《中國(guó)新聞網(wǎng)》1021日?qǐng)?bào)道,全國(guó)很多省市將英語考試作為高考改革的重點(diǎn),一時(shí)間“英語考試該如何改”引起廣泛關(guān)注.為了解某地區(qū)學(xué)生和包括老師、家長(zhǎng)在內(nèi)的社會(huì)人士對(duì)高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語聽力”的問題調(diào)查統(tǒng)計(jì)的結(jié)果如下表:

 

應(yīng)該取消

應(yīng)該保留

無所謂

在校學(xué)生

2100

120

y

社會(huì)人士

600

x

z

已知在全體樣本中隨機(jī)抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.05

(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進(jìn)行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?

)在持應(yīng)該保留態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

(本小題滿分12分)某校從參加高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,將其某科成績(jī)(是不小于40不大于100的整數(shù))分成六段,后畫出如下頻率分布直方圖,根據(jù)圖形中所給的信息,回答以下問題:

(1)求第四小組的頻率.

(2)求樣本的眾數(shù).

(3) 觀察頻率分布直方圖圖形的信息,估計(jì)這次考試的及格率(60分及以上為及格)和平均分.

 

查看答案和解析>>

據(jù)《中國(guó)新聞網(wǎng)》10月21日?qǐng)?bào)道,全國(guó)很多省市將英語考試作為高考改革的重點(diǎn),一時(shí)間“英語考試該如何改”引起廣泛關(guān)注.為了解某地區(qū)學(xué)生和包括老師、家長(zhǎng)在內(nèi)的社會(huì)人士對(duì)高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語聽力”的問題,調(diào)查統(tǒng)計(jì)的結(jié)果如下表:

態(tài)度

 

應(yīng)該取消
應(yīng)該保留
無所謂
在校學(xué)生
2100人
120人
y人
社會(huì)人士
600人
x人
z人
已知在全體樣本中隨機(jī)抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.05.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進(jìn)行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(Ⅱ)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)某校從參加高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,將其某科成績(jī)(是不小于40不大于100的整數(shù))分成六段,后畫出如下頻率分布直方圖,根據(jù)圖形中所給的信息,回答以下問題:

(1)求第四小組的頻率.
(2)求樣本的眾數(shù).
(3) 觀察頻率分布直方圖圖形的信息,估計(jì)這次考試的及格率(60分及以上為及格)和平均分.

查看答案和解析>>

據(jù)《中國(guó)新聞網(wǎng)》10月21日?qǐng)?bào)道,全國(guó)很多省市將英語考試作為高考改革的重點(diǎn),一時(shí)間“英語考試該如何改”引起廣泛關(guān)注.為了解某地區(qū)學(xué)生和包括老師、家長(zhǎng)在內(nèi)的社會(huì)人士對(duì)高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語聽力”的問題,調(diào)查統(tǒng)計(jì)的結(jié)果如下表:

態(tài)度

 

應(yīng)該取消
應(yīng)該保留
無所謂
在校學(xué)生
2100人
120人
y人
社會(huì)人士
600人
x人
z人
已知在全體樣本中隨機(jī)抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.05.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進(jìn)行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(Ⅱ)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

 

第 一 部 分

 

一、填空題:

1.        2.          3.1            4.16

5.                                 6.               7.64           8.

9.25                                 10.①④            11.        12.

13.                          14.

二、解答題:

15.解:(Ⅰ)依題意:,

,解之得,(舍去)   …………………7分

(Ⅱ),∴  ,  ………………………9分

∴    …………………………………11分

.      ……………………………………………14分

16.解:(Ⅰ)因?yàn)橹饕晥D和左視圖均為矩形、所以該三棱柱為直三棱柱.

連BC1交B1C于O,則O為BC1的中點(diǎn),連DO。

則在中,DO是中位線,

∴DO∥AC1.                ………………………………………………………4分

∵DO平面DCB1,AC1平面DCB1,

∴AC1∥平面CDB1.           ………………………………………………………7分

(Ⅱ)由已知可知是直角三角形,

∵  ,

∴  平面平面,

∴  

∵   ,

∴  平面,

平面,

∴  。

17.解:(Ⅰ)由題意知:,

一般地: ,…4分

∴  )!7分

(Ⅱ)2008年諾貝爾獎(jiǎng)發(fā)獎(jiǎng)后基金總額為:

 ,…………………………………………10分

2009年度諾貝爾獎(jiǎng)各項(xiàng)獎(jiǎng)金額為萬美元, ………12分

與150萬美元相比少了約14萬美元。     …………………………………………14分

答:新聞 “2009年度諾貝爾獎(jiǎng)各項(xiàng)獎(jiǎng)金高達(dá)150萬美元”不真,是假新聞。……15分

18.解:(Ⅰ)圓軸交點(diǎn)坐標(biāo)為,

,,故,    …………………………………………2分

所以,

橢圓方程是:               …………………………………………5分

(Ⅱ)設(shè)直線軸的交點(diǎn)是,依題意,

,

,

,

,

 

(Ⅲ)直線的方程是,…………………………………………………6分

圓D的圓心是,半徑是,……………………………………………8分

設(shè)MN與PD相交于,則是MN的中點(diǎn),且PM⊥MD,

……10分

當(dāng)且僅當(dāng)最小時(shí),有最小值,

最小值即是點(diǎn)到直線的距離是,…………………12分

所以的最小值是。  ……………………………15分

 

19.解:(Ⅰ)點(diǎn)的坐標(biāo)依次為,,…,

,…,           ……………………………2分

,…,

共線;則,

, ……………………………4分

,

,

所以數(shù)列是等比數(shù)列。          ……………………………………………6分

(Ⅱ)依題意,

,

兩式作差,則有:,   ………………………8分

,故,   ……………………………………………10分

即數(shù)列是公差為的等差數(shù)列;此數(shù)列的前三項(xiàng)依次為

,可得,

,或,或。           ………………………………………12分

數(shù)列的通項(xiàng)公式是,或,或。    ………14分

知,時(shí),不合題意;

時(shí),不合題意;

時(shí),

所以,數(shù)列的通項(xiàng)公式是。  ……………………………………16分

 

20.解:(Ⅰ)函數(shù)定義域,

,    ……………………………………………4分

(Ⅱ),由(Ⅰ)

,

,單調(diào)遞增,

所以。

設(shè),

,也就是。

所以,存在值使得對(duì)一個(gè),方程都有唯一解!10分

(Ⅲ),

,

以下證明,對(duì)的數(shù)及數(shù),不等式不成立。

反之,由,亦即成立,

因?yàn)?sub>,

,這是不可能的。這說明是滿足條件的最小正數(shù)。

這樣不等式恒成立,

恒成立,

∴  ,最小正數(shù)=4 !16分

 

 第二部分(加試部分)

21.(A)解:AD2=AE?AB,AB=4,EB=3      ……………………………………4分

△ADE∽△ACO,                ……………………………………………8分

CD=3                         ……………………………………………10分

(B)解:(Ⅰ),

所以點(diǎn)作用下的點(diǎn)的坐標(biāo)是!5分

(Ⅱ),

設(shè)是變換后圖像上任一點(diǎn),與之對(duì)應(yīng)的變換前的點(diǎn)是

,

也就是,即

所以,所求曲線的方程是!10分

(C)解:由已知圓的半徑為,………4分

又圓的圓心坐標(biāo)為,所以圓過極點(diǎn),

所以,圓的極坐標(biāo)方程是!10分

(D)證明:

            ……………………………………6分

=2-

<2                              ……………………………………10分

 

 

 

22.解:(Ⅰ)∵,∴,

∴切線l的方程為,即.……………………………………………4分

(Ⅱ)令=0,則.令=0,則x=1.

 ∴A=.………………10分

23.解:(Ⅰ)記“該生在前兩次測(cè)試中至少有一次通過”的事件為事件A,則

P(A)=

答:該生在前兩次測(cè)試中至少有一次通過的概率為。 …………………………4分

(Ⅱ)參加測(cè)試次數(shù)的可能取值為2,3,4,

      ,

    ,

      ,    ……………………………………………7分

        故的分布列為:

2

3

4

     ……………………………………………10分

 

 

 


同步練習(xí)冊(cè)答案