(III)解法一:如圖∵SD=AD=1.∠SDA=90°. ∴△SDA是等腰直角三角形.又M是斜邊SA的中點. ∴DM⊥SA. ∵BA⊥AD.BA⊥SD.AD∩SD=D.∴BA⊥面ASD.SA是SB在面ASD上的射影.由三垂線定理得DM⊥SB. ∴異面直線DM與SB所成的角為90°. -----12分解法二:如圖取AB中點P.連結(jié)MP.DP.在△ABS中.由中位線定理得 MP//SB. 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

(08年東城區(qū)統(tǒng)一練習(xí)一理)(14分)

如圖,在直三棱柱ABC―A1B1C1中,∠BAC=90°,AB=BB1,直線B1C與平面ABC成30°角.

   (I)求證:平面B1AC⊥平面ABB1A1

   (II)求直線A1C與平面B1AC所成角的正弦值;

   (III)求二面角B―B1C―A的大小.

查看答案和解析>>

如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA⊥底面ABCD,AC=2,PA=2,E是PC上的一點,PE=2EC.

(Ⅰ)證明:PC⊥平面BED;

(Ⅱ)設(shè)二面角A-PB-C為90°,求PD與平面PBC所成角的大小

【解析】解法一:因為底面ABCD為菱形,所以BDAC,又

查看答案和解析>>

(08年崇文區(qū)統(tǒng)一練習(xí)一)(14分)

如圖,在直三棱柱ABCA1B1C1中,∠ABC=90°,AB=BC=AA1=2,DAB的中點.

   (I)求AC1與平面B1BCC1所成角的正切值;

   (II)求證:AC1∥平面B1DC;

   (III)已知EA1B1的中點,點P為一動點,記PB1=x. 點PE出發(fā),沿著三棱柱的棱,按照EA1A的路線運動到點A,求這一過程中三棱錐PBCC1的體積表達式Vx).

 
 

 

 

 

 

 

 

 

 

查看答案和解析>>

如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA底面ABCD,AC=,PA=2,E是PC上的一點,PE=2EC。

(I)     證明PC平面BED;

(II)   設(shè)二面角A-PB-C為90°,求PD與平面PBC所成角的大小

【解析】本試題主要是考查了四棱錐中關(guān)于線面垂直的證明以及線面角的求解的運用。

從題中的線面垂直以及邊長和特殊的菱形入手得到相應(yīng)的垂直關(guān)系和長度,并加以證明和求解。

解法一:因為底面ABCD為菱形,所以BDAC,又

【點評】試題從命題的角度來看,整體上題目與我們平時練習(xí)的試題和相似,底面也是特殊的菱形,一個側(cè)面垂直于底面的四棱錐問題,那么創(chuàng)新的地方就是點E的位置的選擇是一般的三等分點,這樣的解決對于學(xué)生來說就是比較有點難度的,因此最好使用空間直角坐標(biāo)系解決該問題為好。

 

查看答案和解析>>


同步練習(xí)冊答案