又由得A1F=A1D所以.三角形DA1F是等腰三角形. 查看更多

 

題目列表(包括答案和解析)

中,已知 ,面積,

(1)求的三邊的長;

(2)設(shè)(含邊界)內(nèi)的一點(diǎn),到三邊的距離分別是

①寫出所滿足的等量關(guān)系;

②利用線性規(guī)劃相關(guān)知識求出的取值范圍.

【解析】第一問中利用設(shè)中角所對邊分別為

    

又由 

又由 

       又

的三邊長

第二問中,①

依題意有

作圖,然后結(jié)合區(qū)域得到最值。

 

查看答案和解析>>

函數(shù)的反函數(shù)為

(A)                    (B)  

(C)                    (D)

【解析】 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821124785682572/SYS201207182112504193665540_ST.files/image006.png">所以.由得,,所以,所以反函數(shù)為,選A.

 

查看答案和解析>>

如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點(diǎn),且平面平面.

(Ⅰ)求證:點(diǎn)為棱的中點(diǎn);

(Ⅱ)判斷四棱錐的體積是否相等,并證明。

【解析】本試題主要考查了立體幾何中的體積問題的運(yùn)用。第一問中,

易知,。由此知:從而有又點(diǎn)的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn).

(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點(diǎn),可以得證。

(1)過點(diǎn)點(diǎn),取的中點(diǎn),連且相交于,面內(nèi)的直線。……3分

且相交于,且為等腰三角形,易知,。由此知:,從而有共面,又易知,故有從而有又點(diǎn)的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn).               …6分

(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點(diǎn),∴VA1-B1C1CD=VC-A1ABD

 

查看答案和解析>>

在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=

(Ⅰ)求角B的大。

(Ⅱ)設(shè)=(sin(C+),), =(2k,cos2A) (k>1),  有最大值為3,求k的值.

【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運(yùn)用

第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故當(dāng)sin=1時,m·n取最大值為2k-=3,得k=.

 

查看答案和解析>>

中,是三角形的三內(nèi)角,是三內(nèi)角對應(yīng)的三邊,已知成等差數(shù)列,成等比數(shù)列

(Ⅰ)求角的大;

(Ⅱ)若,求的值.

【解析】第一問中利用依題意,故

第二問中,由題意又由余弦定理知

,得到,所以,從而得到結(jié)論。

(1)依題意,故……………………6分

(2)由題意又由余弦定理知

…………………………9分

   故

           代入

 

查看答案和解析>>


同步練習(xí)冊答案