8.直線與橢圓的一個交點為.橢圓右準線與軸交于點.為坐標原點.且.則此橢圓的離心率為 查看更多

 

題目列表(包括答案和解析)

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別是F1,F(xiàn)2,過F2作傾斜角為120°的直線與橢圓的一個交點為M若MF1垂直于x軸,則橢圓的離心率為
 

查看答案和解析>>

橢圓的對稱中心在坐標原點,一個頂點為A(0,2),右焦點F與點B(
2
 , 
2
)
的距離為2.
(1)求橢圓的方程;
(2)是否存在斜率k≠0的直線l:y=kx-2,使直線l與橢圓相交于不同的兩點M,N滿足|
AM 
| = |
AN 
|
,若存在,求直線l的傾斜角α;若不存在,說明理由.

查看答案和解析>>

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
左右兩焦點分別為F1,F(xiàn)2,且離心率e=
6
3
;
(1)設E是直線y=x+2與橢圓的一個交點,求|EF1|+|EF2|取最小值時橢圓的方程;
(2)已知N(0,1),是否存在斜率為k的直線l與(1)中的橢圓交與不同的兩點A,B,使得點N在線段AB的垂直平分線上,若存在,求出直線l在y軸上截距的范圍;若不存在,說明理由.

查看答案和解析>>

橢圓C的中心為坐標原點O,點A1,A2分別是橢圓的左、右頂點,B為橢圓的上頂點,一個焦點為F(
3
,0),離心率為
3
2
.點M是橢圓C上在第一象限內(nèi)的一個動點,直線A1M與y軸交于點P,直線A2M與y軸交于點Q.
(I)求橢圓C的標準方程;
(II)若把直線MA1,MA2的斜率分別記作k1,k2,求證:k1k2=-
1
4
;
(III) 是否存在點M使|PB|=
1
2
|BQ|,若存在,求出點M的坐標,若不存在,說明理由.

查看答案和解析>>

橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點分別是F1、F2,過F1作傾斜角為45°的直線與橢圓的一個交點為M,若MF2垂直于x軸,則橢圓的離心率為
2
-1
2
-1

查看答案和解析>>


同步練習冊答案