16. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)有一問題,在半小時內,甲能解決它的概率是0.5,乙能解決它的概率是,

 如果兩人都試圖獨立地在半小時內解決它,計算:w.w.w.k.s.5.u.c.o.m      

   (1)兩人都未解決的概率;

   (2)問題得到解決的概率。

查看答案和解析>>

(本小題滿分13分)  已知是等比數列, ;是等差數列, , .

(1) 求數列、的通項公式;

(2) 設+…+,,其中,…試比較的大小,并證明你的結論.

查看答案和解析>>

(本小題滿分13分) 現有一批貨物由海上從A地運往B地,已知貨船的最大航行速度為35海里/小時,A地至B地之間的航行距離約為500海里,每小時的運輸成本由燃料費和其余費用組成,輪船每小時的燃料費用與輪船速度的平方成正比(比例系數為0.6),其余費用為每小時960元.

(1)把全程運輸成本y(元)表示為速度x(海里/小時)的函數;

(2)為了使全程運輸成本最小,輪船應以多大速度行駛?

查看答案和解析>>

(本小題滿分13分)

如圖,ABCD的邊長為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個不同點,且EA=ED,FB=FC, 是平面ABCD內的兩點,都與平面ABCD垂直,

(Ⅰ)證明:直線垂直且平分線段AD:w.w.w.k.s.5.u.c.o.m       

(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面

體ABCDEF的體積。

 

查看答案和解析>>

(本小題滿分13分)兩個人射擊,甲射擊一次中靶概率是p1,乙射擊一次中靶概率是p2,已知 , 是方程x2-5x + 6 = 0的根,若兩人各射擊5次,甲的方差是 .(1) 求 p1、p2的值;(2) 兩人各射擊2次,中靶至少3次就算完成目的,則完成目的的概率是多少?(3) 兩人各射擊一次,中靶至少一次就算完成目的,則完成目的的概率是多少?

查看答案和解析>>

一、          選擇題:CACDA,ADCBB.

二、          填空題:11.(-4,2)   12.   13.-4    14.  12          15. 

三、解答題(16~18題,每題13分,19-21題12分,共75分)

16.解:∵

       ∴

    

17.證明一:(利用共線向量的判定定理證明)

作為基底,有:, ,從而, 所以A、E、F共線。

證明二:(利用三點共線的判定定理證明)

,而:,所以A、E、F共線。

(可以建立坐標系,利用求出等比分點坐標公式求出E、F的坐標,再證明A、E、F共線)

18.(1)f(x)=sin2x-(1+cos2x)+ sin2x-cos2x

    =sin(2x-)  5分                 ∴T==π   2分                                            

(2)函數y=f(x)的圖象按=(φ,0)(φ>0)平移后,得y=sin(2(x-φ)-)    2分,此函數圖象對稱軸方程為2(x-φ)-=kπ+  k∈Z ,又f(x)平移后關于y軸對稱,∴x=0滿足上式有2(0-φ)-=kπ+,∴φ=-π-   k∈Z            2分

∵φ>0∴當k=-1時,φmin     2分                  

19.(1)由已知得=(sinθ,2)-(-2,co sθ)=(sinθ+2,2-cosθ)      1分     ∵     ∴?()=0

∴(cosθ,sinθ)(sinθ+2,2-cosθ)=0

∴cosθ(sinθ+2)+sinθ(2-cosθ)=0      2分

∴2cosθ+2sinθ=0     ∴tanθ=-1   ∵θ∈(-π,π)

∴θ=-或θ=     3分

(2)由已知=(cosθ+sinθ+2,sinθ+2-cosθ) 1分

 ∴||2=(cosθ+sinθ+2)2+(sinθ+2-cosθ)2=10+8sinθ 2分

∵||≤  ∴10+8sinθ≤14   ∴sinθ≤  ∵θ∈(-π,π)

∴θ∈  3分

20.輪船從點C到點B耗時60分鐘,從點B到點E耗時20分鐘,而船始終勻速,可見BC=3EB                                                2分

   設EB=x,則BC=3x,由條件知∠BAE=60°,在△ABE中,由正弦定理得    ①

   在△ABC中,由正弦定理得   、       2分

   由條件∠BAC=30°+30°=60° ∴sin∠BAC=sin∠BAE

   又∠ABC+∠ABE=180°        ∴sin∠BAC=sin(180°-∠ABC)=sin∠ABE  2分

   結合①②得   ∴AC=3AE  2分                          

   在△ACE中,由余弦定理,得

 CE2=AC2+AE2-2AC?AE?cos120°=9AE2+AE2+3AE2=13AE2=13×∴CE=20     2分  ∴BC=15  ∴船速v=15km/t    2分

21.解: 可以組建命題一:△ABC中,若a、b、c成等差數列,求證:(1)0<B≤

(2)

命題二:△ABC中,若a、b、c成等差數列求證:(1)0<B≤

(2)1<

命題三:△ABC中,若a、b、c成等差數列,求證:(1)

(2)1<

命題四:△ABC中,若a、b、c成等比數列,求證:(1)0<B≤

(2)1<

………………………………………………………………………………………………6分

下面給出命題一、二、三的證明:

(1)∵a、b、c成等差數列∴2b=a+c,∴b=

且B∈(0,π),∴0<B≤

(2)

(3)

∵0<B≤

下面給出命題四的證明:

(4)∵a、b、c成等比數列∴b2=a+c,

且B∈(0,π),∴0<B≤…14分

評分時若構建命題的結論僅一個但給出了正確證明,可判7分;若構建命題完全正確但論證僅正確給出一個,可判10分;若組建命題出現了錯誤,應判0分,即堅持錯不得分原則

 

 


同步練習冊答案